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Why is causality important?

The future of machine learning is to control (the world).



Examples

◮ Classical example:

“Do smokers get

lung cancer?”
versus

“Do smokers have

lung cancer?”

◮ Programming:

y ← f (x) versus y = f (x).

◮ Physics:

a←
F

m
versus F = ma.

◮ Statistics is about measuring correlation of events.

◮ Causality is about the functional dependency of events.

◮ Most of science is driven by the need of causal understanding.



Why is causality . . .

. . . easy?

◮ It is intuitive: we reason in causal terms.

◮ Statistics can deal with it (given the right assumptions).

. . . difficult?

◮ Confounders impede the isolation of the functional
dependency of interest.

◮ The concepts of causation are not fully formalized.

◮ Because it behaves like conditional probabilities under certain
circumstances; in fact quite often because we tend to model
causally!



Current status

◮ Historically studied by many philosophers (e.g. Hume).

◮ Banned from statistical vocabulary at the beginning of the
20th century (Pearson, Russell, . . . ).

◮ Exception: Randomized controlled trial (Fisher?).

Today, still in infancy state:

◮ Significant progress in causal understanding at beginning of
the 90’s.

◮ No consensus in formalization of causal notions.

◮ Many good (but confusing and mutually inconsistent)
formalizations (Pearl, Spirtes, Shafer, Dawid, . . . ).

◮ No measure-theoretic formalization.

◮ But we are slowly getting there!

◮ Compare to the history of probability!



Barometer example

A barometer allows predicting the weather.

B = 700

W = sunny

W

B

◮ If we read B , then can infer W . (Observation)



Barometer example

A barometer allows predicting the weather.

B = 700

W = sunny
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◮ If we read B , then can infer W . (Observation)

◮ If we set B , then we cannot infer W . (Intervention)

◮ We have to distinguish between seeing and doing.



Seeing versus doing
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◮ Assume a circuit connecting observable quantities.

◮ Circuit represents a system embedded in Nature.

◮ Nature & system determine values of observable quantities.

◮ No control over the inputs ⇒ uncertainty.

◮ Statistician can act only inside of the system.



Seeing versus doing
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◮ Seeing = Observing = Measuring.

◮ Seeing is the act of recording the value of observable
quantities.

◮ Seeing is passive: the causal flow is undisturbed.

◮ Collected data allows constructing a truth table.



Seeing versus doing
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◮ Doing = Manipulating = Intervening.

◮ Doing is the act of changing the functional dependency
amongst observable quantities.

◮ Doing is active: the causal flow is disturbed.

◮ Knowing the blueprint is crucial to predict the resulting
functional dependencies after interventions.



The essence of causal discovery

X Y

P

◮ How does X affect Y ?

◮ Collect data =⇒ obtain P(X ,Y ) =⇒ compute P(Y |X )?
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◮ How does X affect Y ? (← What does this even mean?)

◮ Collect data =⇒ obtain P(X ,Y ) =⇒ compute P(Y |X )? No!

◮ There might be a confounder! What do we do now?
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◮ Idea: decouple X from confounders.

◮ How: manipulate X =⇒ intervene P (e.g. randomization).



The essence of causal discovery

X Y

P

Z

◮ How does X affect Y ? (← What does this even mean?)

◮ Collect data =⇒ obtain P(X ,Y ) =⇒ compute P(Y |X )? No!

◮ There might be a confounder! What do we do now?

◮ Idea: decouple X from confounders.

◮ How: manipulate X =⇒ intervene P (e.g. randomization).

◮ But: Now P has changed into (say) Q!



Intervention of a probability distribution 1

Problem:

◮ If the intervention transforms P into Q, how can we ever say
something about P using Q?

◮ Under invariance assumptions, we can!



Intervention of a probability distribution 2

Example:

1. Determine the “blueprint”,

P(X ,Y ,Z ) = P(X )P(Y |X )P(Z |X ,Y )

= P(X )P(Y |X ,Z )P(Z |X )

= P(X |Y )P(Y )P(Z |X ,Y )

= P(X |Y ,Z )P(Y )P(Z |Y )

= P(X |Z )P(Y |X ,Z )P(Z )← (causal decomposition)

= P(X |Y ,Z )P(Y |X )P(Z )

2. Replace P(X |Z ) by Q(X ):

Q(X ,Y ,Z ) = Q(X )P(Y |X ,Z )P(Z )

3. Collect data from Q(X ,Y ,Z ) and compute Q(Y |X ).



Intervention of a probability distribution 3

What have we achieved?

◮ Note that Q(Y |X ) 6= P(Y |X ).

◮ By decoupling X from Z , we have isolated the functional

dependency mapping X into Y .

◮ Q(Y |X ) reflects the right dependency, whereas P(Y |X )
doesn’t!

◮ Analogy: we cannot understand the effect of X on Y in

Y ← f (X ,Z )

if X ← g(Z ) in the collected data, because

Y ← f (X , g−1(X )) = h(X ),

and h(X ) 6= f (X ,Z )!



Stop.



Formalizations of causal inference 1

A non-exhaustive list:

◮ Pearl:
◮ structural equations
◮ represented in DAGs with causal meaning
◮ do-calculus

◮ Dawid:
◮ Augmented DAGs (influence diagrams)
◮ decision variables determine regime of operation

◮ Shafer:
◮ Probability tree
◮ Moivrean events (sets of leaves) (=measure-theoretic events)
◮ Humean events (sets of edges) (transformations)



Formalizations of causal inference 2
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Causality based on structural equations (Pearl)

Description

◮ Causal theory specifies:

1. functional dependencies,
2. probability distribution.

◮ Probabilities can be conditioned in two ways:

1. evidential (Bayesian): P(Y |X = x);
2. interventional (causal): P(Y |do(X = x)).

Causal theory

◮ X = {X1,X2, . . . ,Xn} (observed variables)

◮ U = {U1,U2, . . . ,Um} (unobserved variables)

◮ P(U) (prob. over unobserved variables)

◮ F = {Xi = fi (X ,U)}n
i=1 (inducing partial order over X )



Causality based on structural equations (Pearl)

Description

◮ Causal theory specifies:

1. functional dependencies,
2. probability distribution.

◮ Probabilities can be conditioned in two ways:

1. evidential (Bayesian): P(Y |X = x);
2. interventional (causal): P(Y |do(X = x)).

Causal theory

◮ X = {X1,X2, . . . ,Xn} (observed variables)

◮ U = {U1,U2, . . . ,Um} (unobserved variables)

◮ P(U) (prob. over unobserved variables)

◮ F = {Xi = fi (X ,U)}n
i=1 (inducing partial order over X )

◮ A causal theory can be represented as a DAG.



Example causal theory (Pearl)

X1

X2X3

X4

X5

U1

U3 U2

U4

U5

X1 = f1(U1)

X2 = f2(X1,U2)

X3 = f3(X1,U3)

X4 = f4(X2,X3,U4)

X5 = f5(X4,U5)



The do-operator (Pearl)

X Y

Z

X Y

Z

X Y

Z

X Y

Z

do(X=x)

do(X=x)

◮ Handy notation for interventions that mimicks conditions.

◮ do(X = x) means “replace the equation for X by X = x”.

◮ do(X = x) corresponds to Q(X ) = δx(X ).

◮ Easy graphical interpretation (remove parent links).



Can we infer causal relations from observations?

◮ “To find out what happens
if you kick the system,
you have to kick the system.”

◮ Experiment is impossible or too costly.

◮ E.g. can we replace P(Y |do(X = x)) by P(Y |X = x)?

◮ Calculus to manipulate expressions with do-operations.



Can we infer causal relations from observations?

◮ “To find out what happens
if you kick the system,
you have to kick the system.”

◮ Experiment is impossible or too costly.

◮ E.g. can we replace P(Y |do(X = x)) by P(Y |X = x)?

◮ Calculus to manipulate expressions with do-operations.

◮ Do-calculus

◮ complete



Do-calculus (Pearl)

Let G be the causal DAG representing a causal theory.

Rules

◮ Insertion/deletion of observations:

P(y |do(x), z, w) = P(y |do(x), w) if (Y ⊥⊥ Z |X , W )G
X

◮ Action/observation exchange:

P(y |do(x), do(z), w) = P(y |do(x), z, w) if (Y ⊥⊥ Z |X , W )G
X ,Z

◮ Insertion/deletion of actions:

P(y |do(x), do(z), w) = P(y |do(x), w) if (Y ⊥⊥ Z |X , W )G
X ,Z(W )

where Z (W ) are Z -nodes not ancestors of W -nodes in G
X
.



Simpson’s paradox

Two different recommendations with same data!

◮ Males and females take drug, then check recovery rate.

Drug No-drug

Males 18/30 (60%) 7/10 (70%)
Females 2/10 (20%) 9/30 (30%)

Totals 20/40 (50%) 16/40 (40%)
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recovery rate.
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Low 2/10 (20%) 9/30 (30%)
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Simpson’s paradox

Two different recommendations with same data!

◮ Males and females take drug, then check recovery rate.

Drug No-drug

Males 18/30 (60%) 7/10 (70%)
Females 2/10 (20%) 9/30 (30%)

Totals 20/40 (50%) 16/40 (40%)

◮ Patients take drug, blood pressure is measured, then check
recovery rate.

Drug No-drug

High 18/30 (60%) 7/10 (70%)
Low 2/10 (20%) 9/30 (30%)

Totals 20/40 (50%) 16/40 (40%)

◮ First case: consult separate tables.

◮ Second case: consult aggregated table.



Simpson’s paradox 2

Why?

◮ There is a confounder!

◮ The correct probability to compute is P(R |do(D)).

◮ The two cases have different causal models.

◮ For the second case: P(R |do(D)) = P(R |D).

D R

F BP

D R



Simpson’s paradox 3

1. Assumptions:

P(R|do(D),F ) < P(R|do(¬D),F )

P(R|do(D),¬F ) < P(R|do(¬D),¬F )

2. From intervened graph:

P(F |do(D)) = P(F |do(¬D)) = P(F )

3. Calculating:

P(R|do(D)) = P(R|do(D),F )P(F |do(D)) + P(R|do(D),¬F )P(¬F |do(D))

= P(R|do(D),F )P(F ) + P(R|do(D),¬F )P(¬F )

P(R|do(¬D)) = P(R|do(¬D),F )P(F ) + P(R|do(¬D),¬F )P(¬F )

4. Using the assumptions:

P(R |do(D)) < P(R |do(¬D)).



Conclusions

◮ Causality is about functional dependencies.

◮ Understanding functional dependencies
is essential for control.

◮ Ask the right question:
correlation or functional dependency?

◮ Key operation to isolate functional dependencies:
decoupling of control variables (doing).

◮ There are causal formalisms that work in practice!



Questions?


