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Abstract

The application of expected utility theory to construct adaptive agents is both com-
putationally intractable and statistically questionable. To overcome these difficul-
ties, agents need the ability to delay the choice of the optimal policy to a later
stage when they have learned more about the environment. Howshould agents do
this optimally? An information-theoretic answer to this question is given by the
Bayesian control rule—the solution to the adaptive coding problem when there
are not only observations but also actions. This paper reviews the central ideas
behind the Bayesian control rule.
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1 Introduction

The design of adaptive interactive systems is the quintessential problem of artificial intelligence.
In theory, it is solved by choosing the policy that maximizes the expected utility of the interaction
sequence generated by the agent and the environment. The only difference to the non-adaptive
case is that expected utilities are taken with respect to a Bayesian model over possible environments
(instead of the distribution belonging to any particular environment) [2].In practicehowever, finding
the optimal policy is intractable. The obvious reason why this is so is because the policy space grows
exponentially with the planning horizon. However, there isa second—more subtle—reason.Even
if planning was tractable, it is statistically wasteful having to calculate the optimal policy before
having interacted with the environment even once because the predictions of the model are not
supported by any data [4]. Both aforementioned problems have a solution that is straightforward:
namely, to delay the choice of the optimal policy to a later stage when it is justified by the data.

The central question addressed in this paper is:how do we choose the optimal policy dynamically?
As we will see, this question requires solving the followingsubproblems:

1. How is uncertainty over the policy represented?

2. How are actions issued when the policy is uncertain?

3. How is this uncertainty reduced?

4. How is computation modeled?

We argue that every adaptive control or reinforcement learning (RL) algorithm has to deal with each
one of these problems, either explicitly or implicitly. Forinstance, popular RL algorithms like Q-
Learning, which keep track of a point estimate of the optimalpolicy (and hence do not explicitly
represent the uncertainty over the optimal policy), turn out to implicitly represent policy uncertainty
when interpreted as a stochastic approximation method [9].

An optimal information-theoretic answer to our central question was given in [5]. There, a rule
for adaptive control—called theBayesian control rule—was derived as the solution to the adaptive

1



coding problem when there are not only observations but alsoactions. This paper recapitulates the
central ideas behind the Bayesian control rule.

2 Preliminaries

Notation. We restrict the exposition to the case of discrete time with discrete stochastic observa-
tions and control signals. LetO andA be two finite sets, the first being theset of observationsand
the second being theset of actions. We usea≤t ≡ a1a2 . . . at, ao≤t ≡ a1o1 . . . atot etc. to simplify
the notation of strings. UsingA andO, a set of interaction sequences is constructed. Define the
set of interactionsasZ ≡ A × O. A pair (a, o) ∈ Z is called aninteraction. The set of inter-
action strings of lengtht ≥ 0 is denoted byZt. Similarly, the set of (finite) interaction strings is
Z∗ ≡

⋃

t≥0
Zt and the set of (infinite) interaction sequences isZ∞ ≡ {w : w = a1o1a2o2 . . .},

where each(at, ot) ∈ Z. The interaction string of length 0 is denoted byǫ.

Agent and Environment. Agents and environments are formalized as I/O systems. AnI/O system
is a probability measurePr over interaction sequencesZ∞ uniquely determined by a collection of
conditional probabilities

Pr(at|ao<t), Pr(ot|ao<tat) (1)

for eachao≤t ∈ Z∗. Graphically, an I/O system can be best thought of as a tree where nodes
denote interaction pasts (i.e. the probability condition)and edges represent transitions (i.e. the prob-
ability argument). Depending on how the I/O system is interfaced with another I/O system, these
conditional probabilities will describe how symbols are eithergeneratedor predictedby the system.

Let P, Q be two I/O systems. Throughout this paper, we use the convention thatP is anagent
to be constructed, which is then going to be interfaced with apreexisting (but possibily unknown)
environmentQ. An interaction systemis a pair(P,Q) giving rise to thegenerative measureG that
describes the probability law governing the interaction sequences once the two systems are coupled.
G is defined as

G(at|ao<t) = P(at|ao<t)

G(ot|ao<tat) = Q(ot|ao<tat)

for all aot ∈ Z∗. Intuitively, these equations say that actionsat are generated by the agent and ob-
servationsot are generated by the environment, and that these interactions depend on the interaction
history. This models a fairly general interaction protocolthat can accommodate many others.

Policy and Predictor. For a given agentP, we call the action probabilitiesP(at|ao<t) thepolicy,
and the observation probabilitiesP(ot|ao<t) thepredictor. The predictor captures the assumptions
the agent makes about the statistics of the environment. We assume that we have access to aset of
policies{P(at|π, ao<t) : π ∈ Π} and aset of predictors{P(ot|θ, ao<tat) : θ ∈ Θ} from which
we can pick the policy and the predictor respectively. Thesesets can contain multi-armed bandits,
MDPs, POMDPs, or any other controllable stochastic processes. With a slight abuse of language, we
will say “the policyπ” and “the predictorθ” when we really mean the corresponding probabilistic
models.

At a first glance, it seems sufficient to specify just the policy in order to characterize an agent, since
practically all it needs to know is how to generate actions given the history. However, a complete
information-theoretic characterization requires both the policy and the predictor, because together
they specify the number of bits needed toboth generate and record experience.

Preferences, Utility, and the Relation between Policy and Predictor. If the environmentQ is
known, then we pick the matching predictorθ ∈ Θ such thatP(ot|θ, ao<tat) = Q(ot|ao<tat)
and the correspondingpreferred/optimal policy, which—according to expected utility theory—is
the one that maximizes the expected utility of the interaction sequence. Since interaction sequences
are infinitely long, expected utililities are calculated aslimit processes. Formally, let{U}t∈N be a
collection of real-valued functions over finite interaction strings inZ∗, such that for each infinite
interaction sequencez = a1o1a2o2 . . . ∈ Z∞, the limit

lim
t→∞

Ut(ao≤t) =: U(z)
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exists. The limit functionU : Z∞ → R is theutility function. Hence, the optimal policyπ ∈ Π is
the one that maximizes

lim
t→∞

∑

ao≤t

Pπ,θ(ao≤t)U(ao≤t)

wherePπ,θ is the agent having policyπ ∈ Π and predictorθ ∈ Θ. In practice, utility functions are
constructed as cumulative functions of instantaneous reward or cost functions.

The point is that, regardless of the underlying utility function, the optimal policy is a function
of the predictor, i.e. every predictorθ ∈ Θ has an associated optimal policyπ(θ) ∈ Π. From
an information-theoretic point of view, the parameter of the predictor contains all the information
needed to uniquely identify the optimal policy: knowingθ implies knowingπ, and conversely, not
knowingπ implies not knowingθ. Loosely speaking, expected utility theory provides us with a
“conceptual glue” between predictor and policy that allowsus to shift our attention to full dynamics.
Consequently, in what follows we use a single indexθ ∈ Θ to specify a complete stochastic process
consisting of its predictor and its associated optimal policy.

3 Adaptive Agents

Agents under Policy Uncertainty. We now consider the case when the environmentQ is un-
known. This means that we don’t know which predictor—and hence neither which policy—to
choose. We express our uncertainty by placing probabilities P(θ) over θ ∈ Θ. Thus, the ques-
tion is: accepting that we do not know the optimal policy, howdo we design an agent that learns
the optimal dynamics in the most efficient way? To make this question precise, we rephrase it in
terms of adaptive coding as: how do we maximally compress theinteraction sequence when the
environment is uncertain? This amounts to finding an agentPr that minimizes the collection of
functionals

∑

θ

P(θ)







∑

ao≤t

P(ao≤t|θ) log
P(ao≤t|θ)

Pr(ao≤t)







for all t ∈ N, (2)

that is, the average relative entropy to the target dynamicsfor any planning horizon. In [5], it was
proven that the solution is given by the Bayesian mixture

Pr(ao≤t) = P(ao≤t) =
∑

θ

P(θ)P(ao≤t|θ) for all t ∈ N. (3)

This agent is well defined because the solutions for different planning horizonst ∈ N are all consis-
tent with each other. Inspecting (3), we see that the resulting agent is a weighted superposition of all
the possible agents with weights given by their prior plausibilities. Note that inserting (3) into (2)
yields the mutual informationI(θ; ao≤t) between the environment and the interaction sequence.

Acting & Observing. One of the insights of [5] and ultimately of statistical causality [6, 7] is that
actions can only reduce uncertainty via its effects, but notby themselves. Therefore, actions have
to be treated as causal interventions—unlike observations, which are treated as normal conditions.
Formally, this means that actions have to be drawn from

at ∼ P(at|âo<t),

where the “hat”-notation̂at denotes causal intervention rather than Bayesian conditioning. Infor-
mally, an intervention is a mechanism to inform the agent that the information content of its own
action is zero after it has been issued. Using causal calculus one can show that

P(at|âo<t) =
∑

θ

P(at|θ, ao<t)P(θ|âo<t). (4)

This can be read as follows: actionat is generated by first sampling a beliefθ̄ ∼ P(θ|âo<t) from
the posterior, and then by sampling the actionat ∼ P(at|θ̄, âo<t) from policy θ̄ as if it was the
optimal policy. This mechanism of “randomly instantiatingbeliefs” is also the central idea behind
therandom beliefsandThompson samplingschemes [1, 3, 8].
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For the posterior, the following recursive expression is illuminating [5]:

P(θ|âo≤tât+1) = P(θ|âo≤t) =
P(ot|θ, ao<tat)P(θ|âo<tât)

∑

θ′ P(ot|θ′, ao<tat)P(θ′|âo<tât)
. (5)

The first equality means that actions do not change the posterior. The second equality is just Bayes’
rule. Hence, the posterior is only updated after observations. It is clear that this agent converges
to the optimal policy when the predictor converges. The conditions of convergence are beyond the
scope of this paper.

Modeling Computation. The previous section described a method to design adaptive agents that
dynamically discover their optimal policies in a fully observation-driven way. How do we fit agents
that precalculate their optimal policies into this scheme?

To understand this connection, it is helpful to think about the uncertainties that are involved during
the calculation of optimal policies. The reason why this calculation is done in the first place is
precisely because we hope to resolve our uncertainty over the optimal policy. Hence, we can think
of individual calculation steps as interaction cycles thatreduce the uncertainty over the optimal
policy in the same sense interactions with the world would do. This is because, by definition,any
device that transforms an agent’s beliefs over the dynamicsis part of the environment.

4 Conclusions

The application of expected utility theory to construct adaptive agents is both computationally in-
tractable and statistically wasteful. To overcome these difficulties, agents need the ability to delay
the choice of the optimal policy to a later stage when they have collected more data about the envi-
ronment. We have argued that the Bayesian control rule presented in [5] is the information-theoretic
optimal solution to this adaptive control problem. A key feature is that it distinguishes between the
nature of actions and observations—actions are treated as causal interventions and observations as
standard Bayesian conditions.
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