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Abstract

The application of expected utility theory to constructatilee agents is both com-
putationally intractable and statistically questionalile overcome these difficul-
ties, agents need the ability to delay the choice of the atjolicy to a later

stage when they have learned more about the environmentsHowd agents do
this optimally? An information-theoretic answer to thisegtion is given by the
Bayesian control rule—the solution to the adaptive codirapfem when there
are not only observations but also actions. This paperweavibe central ideas
behind the Bayesian control rule.
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1 Introduction

The design of adaptive interactive systems is the quintéissgroblem of artificial intelligence.
In theory; it is solved by choosing the policy that maximizes the expeaitility of the interaction
sequence generated by the agent and the environment. Thaliffetence to the non-adaptive
case is that expected utilities are taken with respect toya8an model over possible environments
(instead of the distribution belonging to any particularieEznment) [2].In practicehowever, finding
the optimal policy is intractable. The obvious reason why ighso is because the policy space grows
exponentially with the planning horizon. However, thera isecond—more subtle—reasdiven

if planning was tractableit is statistically wasteful having to calculate the opinpolicy before
having interacted with the environment even once becauws@tbdictions of the model are not
supported by any data [4]. Both aforementioned problems laasolution that is straightforward:
namely, to delay the choice of the optimal policy to a latagstwhen it is justified by the data.

The central question addressed in this papendsy do we choose the optimal policy dynamically?
As we will see, this question requires solving the followsupproblems:

1. How is uncertainty over the policy represented?

2. How are actions issued when the policy is uncertain?
3. How is this uncertainty reduced?

4. How is computation modeled?

We argue that every adaptive control or reinforcement iagr(RL) algorithm has to deal with each
one of these problems, either explicitly or implicitly. Hastance, popular RL algorithms like Q-
Learning, which keep track of a point estimate of the optipwlicy (and hence do not explicitly
represent the uncertainty over the optimal policy), turbtoimplicitly represent policy uncertainty
when interpreted as a stochastic approximation method [9].

An optimal information-theoretic answer to our central sfigm was given in [5]. There, a rule
for adaptive control—called thBayesian control rule-was derived as the solution to the adaptive



coding problem when there are not only observations butadtons. This paper recapitulates the
central ideas behind the Bayesian control rule.

2 Préiminaries

Notation. We restrict the exposition to the case of discrete time wisieréte stochastic observa-
tions and control signals. Lé? and.4 be two finite sets, the first being tiset of observationand

the second being treet of actionsWe usen<; = aqaz . .. at, a0, = @101 . . . ao; €tc. to simplify

the notation of strings. Usingl and O, a set of interaction sequences is constructed. Define the
set of interaction@s Z = A x O. A pair (a,0) € Z is called aninteraction The set of inter-
action strings of lengthh > 0 is denoted byZt. Similarly, the set of (finite) interaction strings is
Z* = U,>, 2" and the set of (infinite) interaction sequence€ s = {w : w = aj01a202 ...},
where eaclia;, 0;) € Z. The interaction string of length 0 is denoteddy

Agent and Environment. Agents and environments are formalized as 1/0 systems/@aystem
is a probability measurPr over interaction sequences™ uniquely determined by a collection of
conditional probabilities

Pr(atlao.,), Pr(otlao_,ar) (1)

for eachao., € Z*. Graphically, an I/O system can be best thought of as a tresrevhodes
denote interaction pasts (i.e. the probability conditam) edges represent transitions (i.e. the prob-
ability argument). Depending on how the 1/0O system is irteefl with another 1/0O system, these
conditional probabilities will describe how symbols arthergeneratedr predictedby the system.

Let P, Q be two I/O systems. Throughout this paper, we use the coiovetitat P is anagent

to be constructed, which is then going to be interfaced wipegexisting (but possibily unknown)
environmen®Q. An interaction systens a pair(P, Q) giving rise to thegenerative measu& that
describes the probability law governing the interactiaqueaces once the two systems are coupled.
G is defined as

G(at|@<t) = P((It|@<t)
G(ot]ao,ar) = Q(ot]aoar)

for all ao, € Z*. Intuitively, these equations say that actiepsre generated by the agent and ob-
servations, are generated by the environment, and that these intemact&pend on the interaction
history. This models a fairly general interaction protatwlt can accommodate many others.

Policy and Predictor. For a given ageri®, we call the action probabilitieB(a:|ao_,) thepolicy,
and the observation probabiliti®o;|ao_,) the predictor. The predictor captures the assumptions
the agent makes about the statistics of the environment.sSdtenze that we have access teed of
policies{P(a:|m,ao_,) : 7 € II} and aset of predictorP(o:|0,a0_,a:) : 6 € O} from which
we can pick the policy and the predictor respectively. Thsete can contain multi-armed bandits,
MDPs, POMDPs, or any other controllable stochastic prae34/ith a slight abuse of language, we
will say “the policy =" and “the predictoiy” when we really mean the corresponding probabilistic
models.

At a first glance, it seems sufficient to specify just the policorder to characterize an agent, since
practically all it needs to know is how to generate actionggithe history. However, a complete
information-theoretic characterization requires both plolicy and the predictor, because together
they specify the number of bits neededtmth generate and record experience

Preferences, Utility, and the Relation between Policy and Predictor. If the environmentQ is
known, then we pick the matching predictore © such thatP(o;|0,a0_,a;) = Q(o¢|ao_,a;)

and the correspondingreferred/optimal policywhich—according to expected utility theory—is
the one that maximizes the expected utility of the intecaciequence. Since interaction sequences
are infinitely long, expected utililities are calculatedliasit processes. Formally, I€fU},cn be a
collection of real-valued functions over finite interactistrings inZ*, such that for each infinite
interaction sequence= ai01a202 ... € Z2°°, the limit

[Jim Uy (ao<,) = U(2)



exists. The limit functioJ : Z°° — R is theutility function Hence, the optimal policy € 1T is

the one that maximizes
lim Z Pﬂ.ﬂ(@g)U(@gt)

t—o00
a0y
whereP . ¢ is the agent having policy € IT and predictop € ©. In practice, utility functions are
constructed as cumulative functions of instantaneousrteaacost functions.

The point is that, regardless of the underlying utility ftion, the optimal policy is a function
of the predictor, i.e. every predictdr € © has an associated optimal polieyd) € II. From

an information-theoretic point of view, the parameter @& firedictor contains all the information
needed to uniquely identify the optimal policy: knowiégmplies knowingr, and conversely, not
knowing w implies not knowingd. Loosely speaking, expected utility theory provides ushvait
“conceptual glue” between predictor and policy that allmsgo shift our attention to full dynamics.
Consequently, in what follows we use a single index © to specify a complete stochastic process
consisting of its predictor and its associated optimalqyoli

3 Adaptive Agents

Agents under Policy Uncertainty. We now consider the case when the environm@rnis un-
known. This means that we don’t know which predictor—anddeeneither which policy—to
choose. We express our uncertainty by placing probalsiltig) overd € ©. Thus, the ques-
tion is: accepting that we do not know the optimal policy, hdawe design an agent that learns
the optimal dynamics in the most efficient way? To make thisstjon precise, we rephrase it in
terms of adaptive coding as: how do we maximally compressnieeaction sequence when the
environment is uncertain? This amounts to finding an adfenthat minimizes the collection of
functionals

(a0<t|9
P60 P(ao-,|0)log ————— forallt € N, (2)
2 PO 2 PlaczlO)los 5075

aogt

that is, the average relative entropy to the target dynafoicany planning horizon. In [5], it was
proven that the solution is given by the Bayesian mixture

Pr(ao,) = P(ao.,) ZP P(ao,|0)  forallt e N. (3)

This agent is well defined because the solutions for diffigpemning horizong € N are all consis-
tent with each other. Inspecting (3), we see that the regp#tgent is a weighted superposition of all
the possible agents with weights given by their prior pleilises. Note that inserting (3) into (2)
yields the mutual informatioR(0; ao.,) between the environment and the interaction sequence.

Acting & Observing. One of the insights of [5] and ultimately of statistical cality [6, 7] is that
actions can only reduce uncertainty via its effects, buthyothemselves. Therefore, actions have
to be treated as causal interventions—unlike observatishigeh are treated as normal conditions.
Formally, this means that actions have to be drawn from

ar ~ P(a|ao ),

where the “hat’-notatiofd; denotes causal intervention rather than Bayesian conditio Infor-
mally, an intervention is a mechanism to inform the agent the information content of its own
action is zero after it has been issued. Using causal calcua can show that

P(a¢|ao,) ZP at|0, a0 )P(flao,). (4)

This can be read as follows: actian is generated by first sampling a belief P(9|ao<t ) from
the posterior, and then by sampling the actign~ P(a,|, ao_,) from policy 6 as if it was the
optimal policy. This mechanism of “randomly instantiatingliefs” is also the central idea behind
therandom beliefandThompson samplingchemes [1, 3, 8].



For the posterior, the following recursive expressionligilinating [5]:

R . P(o¢]0,a0_,a;)P(0)ao_ )
P(9 — P(0lao-,) = 80<y8e)" W0 Te)
(Olositent) = PUOR2) = 5 (007 a0 0P (0,1

The first equality means that actions do not change the post€he second equality is just Bayes’

rule. Hence, the posterior is only updated after obseratidt is clear that this agent converges
to the optimal policy when the predictor converges. The @t of convergence are beyond the
scope of this paper.

(®)

Modeling Computation. The previous section described a method to design adagergsthat
dynamically discover their optimal policies in a fully olpgation-driven way. How do we fit agents
that precalculate their optimal policies into this scheme?

To understand this connection, it is helpful to think abdwt tincertainties that are involved during
the calculation of optimal policies. The reason why thiscakdtion is done in the first place is
precisely because we hope to resolve our uncertainty oeasggtimal policy. Hence, we can think
of individual calculation steps as interaction cycles tretuce the uncertainty over the optimal
policy in the same sense interactions with the world would Blis is because, by definitioany
device that transforms an agent’s beliefs over the dynaisipart of the environment

4 Conclusions

The application of expected utility theory to construct atilee agents is both computationally in-
tractable and statistically wasteful. To overcome theffecdities, agents need the ability to delay
the choice of the optimal policy to a later stage when theetallected more data about the envi-
ronment. We have argued that the Bayesian control rule ptegén [5] is the information-theoretic
optimal solution to this adaptive control problem. A keyttea is that it distinguishes between the
nature of actions and observations—actions are treatedussikcinterventions and observations as
standard Bayesian conditions.
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