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Motivation

Algorithms, like UCB1, do not learn the optimal strategy.

UCBI1 versus reactive bandit with 8 = —1 UCBI1 versus reactive bandit with 5 = —0.09
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e Most of the literature on multi-armed bandits deals with either one of two
general classes of bandits: stochastic and adversarial. N .......................

e Bubeck & Slivkins (2012) and Seldin & Slivkins (2014) have presented
algorithms that achieve optimal performance in both classes of bandits.

UCB1's empirical
frequencies do not
converge to the
optimum.

e This unification is important: modelling and identitying the “attitude”
of a bandit from data has applications in systems that are risk-sensitive,
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e.g. systems that must prevent attacks or adaptively build trust in its NN
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e We introduce a bandit model that can instantiate the full continuum ’
from adversarial, to stochastic, and even to cooperative bandits by
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Reactive Bandits
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Goal: Maximize the expected reward: Example: 3-D Gaussian .
Conclusions
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k The optimum switches
When f — —oo, bﬁ%mmgtﬁ e We introduce a class of reactive bandits that modulate their reward
The optimal strategy depends on {: P, — 21,/5202_ " chosen. distribution in response to the past actions of the player.
Case 3 > 0: The optimal strategy is determinis- > —
tic: = Dy e For 5 > 0, rewards partially align with the player.
* . 2 b5
[" = arg e x(pi + Boy) E Do e For 8 < 0, rewards partially counteract the player’s strategy.
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Case (§ < 0: The optimal strategy is D3 e The Gaussian case has analytic solutions and a simple optimal policy,
A — g which is mixed in the adversarial case.
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2p0y, O adversarial (4 < 0) cooperative (3 > 0) e Current bandits algorithms do not possess the necessary strategy space
3 0 +3 and thus cannot achieve sublinear regret.
where )\ ensures that ) , pr = 1. Algorithmically, Attitude O 5
A 1s obtained through a water-filling algorithm. In e We show that these bandits can be played using a Bayesian model in
general, it 1s stochastic. combination with Thompson sampling.
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