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Our goal

Design an online learning method that

1. scales to very large data

2. and complex models

3. while avoiding overfitting, . . .

. . . by combining ideas from

1. stochastic gradient descent (for its simplicity),

2. Bayesian filtering (to avoid overfitting),

3. and multi-armed bandits (to bypass costly intregration).



Big challenges in machine learning. . .

I life-long learning,

I computer vision,

I natural language processing,

I bioinformatics,

I robotics. . .

⇒ learning tasks with very large datasets/data streams.



. . . ask for more complex models

Common wisdom:

I With more data, our learning algorithms find better
parameters. [Halevy et al., 2009]

However:

I Having more data asks for richer models to answer complex
questions, and richer models require regularization—even
when data is abundant [Welling and Teh, 2011].
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Main ingredients

Stochastic gradient descent (SGD):

1. Phrases learning task as optimization problem.

2. Pros: Simple; scalable; strong theoretical guarantees
(convex).

3. Cons: Overfits if not regularized.

Bayesian filtering:

1. Capture parameter uncertainty.

2. Pros: Principled approach to avoid overfitting.

3. Cons: Computationally very expensive for complex models.

Thompson sampling: to bypass marginalization.
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Main idea

a) b) c)

We want to combine the best of both worlds.



Belief flows: ingredients

Given:

I Model Fw(x), input x ∈ Rp, parameter w ∈ Rd

I Family of belief distributions: Pθ(w), θ ∈ Θ

I Family of flows: w′ = fξ(w), ξ ∈ Ξ



Belief flows: typical algorithm

For each round n = 1, 2, . . .

1. Given prior Pn(w)

2. Collect input xn

3. Sample parameter wn ∼ Pn(w)

4. Predict output ŷn = Fwn(xn)

5. Observe true output yn (and get loss `(yn, ŷn))

6. Observe update w′n = fξ(wn)

7. Infer posterior Pn+1(w)
by minimizing DKL(Pn+1||Pn) s.t. w′n = fξ(w) and ξ ∈ Ξ.



Gaussian belief flows

I Family of belief distributions:

P (w) = N (w;µ,Σ), [µ,Σ] ∈ Θ.

I Family of flow fields:

w′ = Aw + b, [A, b] ∈ Ξ.

I Update oracle:

w′ = w − η ∂

∂w
`(y, ŷ)

where `(y, ŷ) is a loss function.



Update rule

The posterior that minimizes DKL(Pn+1‖Pn) subject to the
constraints is given by

Σn+1 = A∗ΣnA
∗T µn+1 = µnA

∗(µn − wn) + w′n
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Restricting Gaussian belief flows

We obtain simpler update rules by restricting the flows and the
shapes of the belief distributions.

Examples:

1. Diagonal Σ ⇒ diagonal flows

2. Isotropic Σ ⇒ spherical flows

3. < 1 singular values of A ⇒ non-expansive flows



Example Gaussian belief flows
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Empirical evaluation

Goal: compare effects of regularization schemes.

I online classification error (%80 of data)

I test classification error (%20 of data)

Tasks:

1. Logistic regression
I Data: MUSHROOM, COVTYPE, IJCNN, EEG, A9A
I Algorithms: AROW, SGD, Bayesian Langevin

2. Feed forward neural network (784-200-10)
I MNIST: plain, random & image background
I Algorithms: SGD, DROPOUT



Experimental results: logistic regression

Binary Classification Results
Online Classification Error in %

MUSHR. COVTYPE IJCNN EEG A9A Rank

AROW 5.32 22.58 8.44 43.59 17.79 1.2
SGD 11.86 28.03 9.01 43.39 18.62 1.8
BLANG 14.44 29.30 12.86 43.71 20.51 3.2
BFLO 14.30 28.14 10.34 44.07 19.03 3.8

Test Classification Error in %

MUSHR. COVTYPE IJCNN EEG A9A Rank
max{σerr} 0.23 0.12 0.26 0.69 0.08

AROW 9.59 37.18 20.10 65.38 15.85 3.0
SGD 5.35 37.45 19.10 60.57 17.45 2.6
BLANG 1.16 38.39 15.97 64.85 17.68 2.6
BFLO 1.79 37.03 16.92 62.76 17.00 1.8



Experimental results: neural networks

MNIST Classification Results
Online Classification Error in %

PLAIN RANDOM IMAGES Rank
max{σerr} 0.07 0.96 1.16

SGD 11.25 89.14 72.41 3.0
DROPOUT 9.84 52.87 50.68 1.6
BFLO 11.01 37.94 47.71 1.3

Test Classification Error in %

PLAIN RANDOM IMAGES Rank
max{σerr} 0.44 3.33 6.05

SGD 7.01 89.17 65.17 3.0
DROPOUT 5.52 53.42 46.67 2.0
BFLO 5.00 29.11 41.55 1.0
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Conclusions

I Regularization scheme.

I Works best for complex models.

I Fairly robust to noise.

I Related to ensemble learning methods under quadratic cost
functions.

I Related to multi-armed bandits (exploration-exploitation
dilemma).

I Can be extended to other belief shapes and flows.



Thank you!
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