Error Backpropagation with Generalized Functional
Composition

Alejandro Bassi and Pedro Ortegabassi | peortega}@icc. uchil e. cl
Departamento de Ciencias de la Compuiaci
Facultad de Cienciasigicas y Materaticas
Universidad de Chile

Abstract—We present a flexible implementation scheme to parameter vectow € RM*N+M A standard network with
build learning machines that are trained with backpropagation. gn input of three components, a hidden layer of four neurons

The proposed ‘approach departs from standard feedforward 5nq an output layer of two neurons with linear activatiors) ¢
artificial neural networks by using general vector functions b ted by th ite functi
as the basic calculating units instead of simple neurons with € represented by the composite function

single outputs. Elaborate structures are created from these Isc

building blocks by combining them with composition operators.

The operators can express intricate dataflow interactions in a
much straightforward way than what is achieved with networks

of connected neurons. Nested structures are built transparety. affine®? (logistict(affine? (x

Error and regularization terms may be inserted at arbitrary il “’2(J (aff Wl()

pomts within a network. In all cases the gra_dlent computation The example above illustrates a simple case of function
is based on the same standard procedures, independently of thecomposition. It can be argued that this kind of represeamat

learning algorithm. No special training methods are needed for . . .
complex architectures. Our approach is easy to implement and less flexible than a neuron based one. Particularly, it isvadit

to extend with custom basic units and composition operators. As Suited to growing and pruning algorithms [25]-{27], where
one of its major practical advantages, it provides a framework the very structure of the network is dynamically adapted.

to rapidly create and test many network designs for a given However, the great majority of practical ANN are structured
problem, easing the search of a suitable model. in homogeneous processing layers easily described with thi
Index Terms— Backpropagation, functional composition, neu- functional scheme.

4,2

aﬂinei‘ff o logistic* o affiney;

which is also a vector function that can be evaluated as

ral network, modularity, compilation. We present a generalized functional approach to create
learning machines that can be used as an alternative teasthnd
I. INTRODUCTION feedforward ANN. Other complex neural architectures ase al

RTIFICIAL neural networks (ANN) are COmputationa|considered,.including nonfeed_fprward ones. We define afseto
A models whose processing units can be viewed as siMECtOr fupcyons and composition operators and explain how
plified simulations of biological neurons. The calculatiofl€Se building blocks are used to define network structures
of a unit generally involves a weighed sum of its inputsa}nd how they are _|mplemented in an efficient way. Compc_)sne
reshaped by a non-linear activation function with boundediructures are designed to behave the same way than basic vec
output. Following the early success of the perceptron [SP' functions and may become part of higher level structures
the decisive breakthrough of artificial neural networks eanf\l building blocks are compatible with backpropagation.
after the discovery of the backpropagation algorithm [8]alih Unllkel the.usual practice in Wh|ch the training algorithm is
allows to adjust the weights of multilayered networks usine%";dw'red into the learning machine, our approach separate
gradient descent. The key improvement was to replace gradient computation. It permits to apply any first order
discontinuous step activation of the original artificialungn Parameter optimization algorithm regardless of the neitwor
with a continuous logistic function [6], [7]. architecture.

In spite of the historical importance of the neuronal Similar modular approches to implement neural nets have
metaphor, most multilayered networks can be described irPgen Proposed [9], [12]. Nevertheless, their framework re-
much more compact way relying on general vector functiof§éficts function composition to cascade evaluation andato n
rather than the usual single output artificial neuron. For eftate how to generalize to other dataflow layouts.
ample, let the vector functionsffine’x™ and logistic” be

w

defined as A. Notation
N,M _
affiney™ (x) = Ax +b Lower-case bold letters, for example, denote vectors,

1 N T while upper-case bold letters, such B, denote matrices.
logz’stz‘cN(x) = [He—””} Elements are referred as; and M; ;. Calligraphic upper-
i=1 case letters denote finite indexed sets, ad’jrwhich contain

wherex € RY, A is matrix of sizeM x N andb is a |X| elements. The notatiocﬁx"f}‘,:j1 is used to emphasize its
vector of M components. BottA andb are embedded in the members, each one identified by a superscript. The vector

refers to both column and row vectors, as it should be clear oo

from the context. For objects such as scalars, matrices and al,. . Er(w)
indexed sets, a default encoding as a vector will be assumed, M, w) ém E
for example[M; ;]; ; withi =1,...,n andj = 1,...,m can s o [Funetion /- Fr
be rewritten agMy], with k = 1,...,m x n. If an object has Input Machine yo&{p "

been encoded as a vectprand embedded into a vectat,

thenx[y] denotes those elements. For a tuplethe notation w

U.I refers to its membef. The dot notationk stands for the Parameters

error gradient with respect t, i.e. 0E/0x. _ _
Along this text, the following symbols appear repeatedly Fig- 2. Error evaluation scheme

U Processing unit
c Composite unit Cost
. . . Function
E Error or regularized unit Learning
achine
M
Q

OE

Learning Machine oyl
Execution sequence et
X,V,D Input, output and target set £
x,w,y,d input, parameter, output and target Gradient
(Parameters)
vectors
HW ¥ input, parameter and output gradi- Fig. 3. Gradient evaluation scheme

ent vectors

Il. GRADIENT BASED LEARNING

There are several approaches to automatic machine Ier;xrnmé;'S feature by designing appropriate processing units. To
but much of the successful approaches can be categorizdgure the seamiless integration of the units, they musecesp
as gradient-based learning method&1]. The training task additional design constraints as explained below.
consists in feeding a learning system with a training Bet
and parameterss and to compute an associated error dBst A. Compositionality and forward evaluation
which measures thg_performgnce of Fhe system (Figure 1a)gnction composition can be achieved by defining appropri-
The aim of the training task is to adjust the paramewrs .o fnctional operators. For example, considerhitilayer
using a gradient descent technique, so thais minimized pecentronarchitecture (MLP) where processing layers are
given7 (Figure 1b). connected in cascade. This setup is viewed as a set of
processing units assembled by a serial composer defined as

Learning serial(UY, U?,...,U™) = U"(...U*(U'(x))...)

a) b)

Learning

7.—' - System ‘E
T cost whereU',U2,..., U™ are units which compute the desired
vector functions. The MLP given in the previous example
w ow would then be defined by
Parameters Gradient
serial(a]fﬁnei}f7 logistic?, aﬂ?nei}i). (1)

Fig. 1. Learning system))) .) o
This expression describes a composite unit consistingreeth

. - . basic calculating units and a dataflow layout given by thebker
The Iea_rnlng syst_em can be divided up mtp two Cc_’mp(_me,n%mposition operator (Figure 4). The resulting compositi¢ u
the learning machine and the cost function. This divisio mbodies itself a vector function, whose output dependsson i

allows to restate the problem as follows. The training task) nits’ outputs. This dependency can be explicited uaing
feeds a learning maching&/ with input vectorsX¥ = {x'}, syntax tree (Figure 5).

retrieves the output vecto®® = {M (x*,w)}, and computes
a cost £, making use of additional desired target vectors
D = {d’} in the supervised case (Figure 2). The parameters

are then adjusted using the cost gradient. Figure 3 depicts 1
this idea. The end result of this setup is the trained legrnin 2
machineM . 3

A learning machine may be regarded as a processing
unit that implements a vector function and its gradient. A
machine may be simple (atomic) or complex, consisting of the
composition of several units possibly composite as welke Th
key here is to recognize that recursive function compositiq:ig. 4 MLP 3-4-2
allows for arbitrarily complex (neural) structures and xpleit

routines: the gradient evaluation procedure and the bactkwa
serial evaluation procedure.

a) forward procedure

3,4 L 4,2
a]’ﬁnew'l logzstzc4 aﬁﬁnewé

Learning
Unit

x —>
Input

y
Output

Fig. 5. MLP Tree

w
Parameters

.
The output of a basic unit results from a direct evaluation) gradient procedure

of the associated vector function. In contrast, a compasite backpropagation procedure

could require the evaluation of several subunits accortling
dataflow layout. A functional composition is defined throwgh + < Leaming 5
dataflow layout that implies an evaluation order. The chdine Gradient Unit Gradient
ordered evaluation from the inputs to the outputs is calhed t (Input) (Output)
forward propagationIn our example, the forward propagation
consists of the following steps: v:;
Gradient

1. executeaffine? (x) — v, (Parameters)

2. executelogistic™(vy) — va

3. executeaﬁinei;i (va) =y Fig. 7. (a) Forward and (b) backward evaluation

where v; and v, are intermediate results. Here, the serial

composer fixes the execution order, allocates the buffars fo Consider a basic unit that produces outgutrom input x
intermediate results and establishes the dataflow. @ésu- With parametersv. Identifying

tion sequencedepicted in figure 6, is basically the compiled . OFE . 0OFE . OFE

form of expression (1). It contains all the information need = 0%’ y= By’ V= ow

to compute the outpu of the serial unit given inpuk.
P P g P and assuming thag is already computed, then, applying the

o o U chain rule for partial derivatives¥ and x are given by the
rocessing Units following equations

—| afﬁnei,iH logistic* Ha‘fﬁnei}; l_' ;= Z oy, . @)
k

A -
ow; Yk

, , . Dy, .
e I e B e O &= Y S 3)
k 1

Intermediate Results

So, giveny, a basic unit calculate®& by executing its gradient
Fig. 6. Execution sequence. procedure (2), and it backpropagates the error gradiett to
with the backward propagation procedure (3), as depicted in
The example above can be easily extended to the gendi@fre 7- o o _
case. Basic units contain all the information to carry out In the case of composite unlt_s, the error gra_dlent is obthine
the computation of a vector function given an input anfy fo.IIov.vmg the forward e?<ecut|on sequence in reverse iorde
output buffer. Functional operators allow the constructas Continuing with our previous MLP example, tieckward

composite units described by expressions which are cochpil¥oPagationsequence is

to execution sequences. l.a execute gradientffine®?(y) — Wwo
1.b execute backpropffine®?(y) — Vo
B. Error backpropagation 2.a execute gradierﬂbgz'stic4(\'/2) — null

2.b execute backprofpgistic*(vy) — Vo
3.a execute gradientffine®*(v,) — w,
3.b execute backpropffine®*(v,) — %

In addition to the previous forward evaluation procedure,
the MLP needs an efficient procedure to compute the gradient
of the error with respect to its weights. This is achieved by
the error backpropagation algorithm [6]-[8], which is lzadly It is worth noticing that the buffers involved in this proce-

a practical application of the chain rule [9]. To supportsthidure are the gradient counterparts of the forward evalnatio

algorithm, the execution sequence is extended with gradi€Rigure 8). Subunits are always connected through shared
buffers and backward procedures. For each buffea cor- buffers. This invariant embedding assumption ensures the
responding gradient buffe¥ of the same size is created. Inseamless integration of units. With this extension and the
addition, each unit is equipped with two error backpropapat forward and backward propagation procedures, a composite

unit represented by a syntax tree is correctly compiled &2 Composite units

calculate its outputs and gradients. A composite unitC' is described as a tuple
Processing Units C= (Ccompile> 1,0, S)
4—|(Lﬁ3nei,’4|'|logistic‘lH(Lﬁﬁnei;zl— where S is the list U, U?,...U% of subunits of C and
A A

1
A

Ceompite the compilation procedure that creates the dataflow
_____ SN S (SN Y NN (R layout of the composite unit fror§. The Cy,, Cyraq and Cyy,
procedures are implicitely defined by this layout. Composit

Lx] [w] [=] L[] units do not define trainable parametersbut they subsume
Lx] vl [e] [the parameters of their subunits, concatenating thém: =
Intermediate Results [Ul.W, Ulw,... UL.W].
The list S represents the first level of a tree structure
Fig. 8. Backward execution sequence. whose final leaves are basic units. When a learning machine is

created, the tree is compiled to generate an execution segue
of appropriately ordered and contextualized invocations t
I1l. BUILDING BLOCKS basic units. All the calculating procedures of a composite

. . unit are then ultimately implemented using the procedures
In order to easily create a neural architecture we propose

three kinds of building blocks: basic units that implemenefssﬁmated o the leaves .Of t?ehtrefe.

atomic vector functions, composite units that are builirfro The procedurelcompc is of the form
subunits, themselves possibly composite, and error olaegu Ceompite = compile(C,x,y,X,y)
ized units which are the source of the gradient computation.
Composite units define different dataflow layouts dependirilé;
on the composition operator they embody.

Since composite units have subunits, the compiling process
recursive. A defaultompile procedure is needed for termi-
nal basic units:

compile(U,x,y,X,y) :

A. Basic units L.

A basic unitU can be minimally described as a tuple) o ’
Following a standard compilation technique [28], each call
U = (Upw, Ugrad, Upi, I, O, W, W) to appendStep produces a single execution step which is
where Uy, is the forward evaluation procedurél,,.q the appgndeq to the execution sequence of the learning machine
gradient calculating proceduré],, the backpropagation pro- that is being created.
cedure, the size of the input vector) the size of the
output vector,w the trainable parameters (weights) of th€. Error or regularized units
unit andw the storage for the gradient of the weights. This an error or regularized unif is described as a tuple
description is minimal in the sense that additional data may
be necessary for particular basic units, for example toestor E = (Epw, Egraa, Evr, 1,0,U)

non trainable parameters. The forward evaluation pro@dyjhere(s is the subunit to which the error criterium is applied
Ur, of a basic unit is associated to a vector functiéwhose (it ysually encompasses the whole structure of a machine).
derivatives{9F /Qw; }[} and{9F /dx;}._, must be defined The vector function associated 1 is the same than for

to implementU,,.a and Uy, respectively. There is an implicit ;7. A regularized unit can therefore be used as a building
order between these procedures. Before evaluating and plock exactly like its subunit. This equivalence is achibve

Ugraa the results ofUy, are needed. transparently by using it£ the same buffer, y, x andy
The procedured/s,, Ugraa and Uy, are of the form of U. To ensure it, a defaultompile procedure is defined for
Upo = fw(U,x,y) error units:
Ugr{zd = gmd(U,X,y,y) compile(E, XvYa}.cvy) :
Uy =bk(U,x,y,%,y) compile(E.U,x,y,X,¥)

where all arguments are references to external data pavide appendStep(E,x,y,%,y)

by the embedding execution contekt:is a unit reference and whereE.U is a notation to indicate th€ component o2 and

X, y, x andy are the input, output, input gradient and outputhe call to compile(E.U, .. .) refers to the compiling method

gradient buffers, respectively. The result@f,, is obtained in of U.

y and that of Uy, in x. Uypeq modifiesw. The procedures associated to a regularized unit have the
In order to create adequately initialized representatiains same interface than those of basic units. However, the forwa

specific units, each type of unit is associated to a creatiprocedureEy, does not implement a vector function because

function, or constructor in object oriented terminology. A the procedurely, of the underlying unit is assumed to carry

constructor produces the representation of a unit of theeeorout this task. Instead, when the embedding machine is being

sponding type as the result of its invocation with apprdpriatrained, it calculates the error function associatedztoTwo

defining arguments. error types are considered in our design: errors over thautait

y of U and errors over its parametews In the former case foU,x,y)

Ey;, adds the contribution of the error §a In the latter case, y < Ax+b
E4r0q adds the contribution of the error to. .
The compiler generates the execution sequendé béfore grad(U,x,y.¥) :

W[A] — W[A] + yxT

the execution step of its parent error uhit When the forward . . .
Ww[b] « Ww[b] +¥

evaluation is carried out, the function associatedUiois
calculated as expected before the error. During the backwar
evaluation, the error contribution t is available before the
backpropagation. Errors need to be calculated only when the
embedding machine is beeing trained.

bk(U7X7y7).(7y) :
% ATy

where the notationv[M] refers to ‘the locations in vectov
associated to the values of matfd’.

In spite that some arguments of the methods are not used in
this particular case, they are kept for the sake of uniformit

A MLP can be constructed relying on two types of basi?:—he guiding design principle is that, externally, all typefs

vector processing unitsaffine transformations andogistic Units have the same interface.

non-linear projections. Additionally, aerial connector is The gradient of basic units is calculated by adding the

needed to glue these basic units to form composite multila§ontribution of the current training example¥a Providedw

ered structures. In order to evaluate its gradients, the Miggiven an initial zero value, the gradient for a set of exesip

must also be associated to an error function. is obtained by merely executing the calculations succelsiv
with each one of them.

D. MLP building blocks

2) Logistic basic units :The constructor for logistic units
needs only one argument since its inputs and outputs have the
same dimension:

U = logistic(N) :
U «— new(Logistic)
Ul —N
UO«—N

The methods are defined as follows:

Ju(U,x,y) :
y [/ +e)2,”

. - grad(U,x,y,y) :
Fig. 9. MLP building blocks.

9 9 null method
Panel a) shows aaffine basic unit affine(3,3), b) a logistic basic unit

logistic(4), and c) a serial connectaerial(S!, S2, S3). bh(U 9
) X7 y’ X7 y :

o . T
X — [9iyi(yi — 1)]%:1

1) Affine basic units The constructor for affine transfor-
mations is invoked asffine(N, M), whereN is the dimension Where the null gradient method is needed for interface com-
of the input of the unit to be created and that of the output. patibility.

The attributes of the unit are initialized as follows: 3) Serial composite units The constructor for serial

U = affine(N, M) : composite units is invoked with a list of subunits to be
U «+ new(Affine) connected. It generates a tree structure that must be cnpil
Ul — N before execution. The constructor is defined as:
UO— M ‘ - .
Uw «— vector(M x N + M) Czsemal(U7U.7...,U):
Uw — vector(M x N + M) C « new(Serial)
CIl—U"I
where the parameter vecter and its gradientv are assigned CO—ULo
with vectors of appropriate size. The methotd$,, Ujred S —ULu2,... Uk

and Uy, are the same for every unit of théffine type. The

operatiomew(Affine) is responsable of linking these methodsvhere eachU* is a previously created unit. The compilation
to the particular instance that is beeing created. Assuraingnethod for serial units links the output of each subunit ® th
standard mapping of the parameters int@a< I matrix A input of its successor in the list. This is achieved by using
and a0 vectorb, the methods are defined as follows: buffers to store intermediate results as shown below:

compile(C,x,y,X,y) : M = machine(U) :
vl «— vector(UL.0) ; v « vector(UL.0) M — new(Machine)

compile(U', x, v %, vt) MU U

vZ «— vector(U.0) ; ¥v? « vector(U'.0) M .x — vector(U.I)

compile(U?, v, v2 vt v?) M.y «— wvector(U.O)

.. M .%x «— vector(U.I)

vE=L wector(U.0) ; vE=1 « wector(U'.0) M.y « vector(U.O)
compile(UF—1 vEi=2 yI=1 yE=2 yL-1) M.Q « void
compile(U*,vE=1y vE=1 y) compile(U, M.x, M.y, M.x, M.y)

where eachU/* belongs to theS list of C' and the call to The global buffers are initialized with vectors of apprepei
compile(U*, . ..) refers to the compiling method @f*. size and the compilation is recursively carried out to eéat

4) Mean square error units The constructor for mean Q the sequence of steps defined for the Ghiln our previous
) qu units - u MLP example, extended to include these error,

square error units allows to associate this error to an un-
derlying unit which represents a whole ANN structure. The e (serial (affine(3,4), logistic(4), affine(4,2)))
constructor is defined as:

the corresponding generated sequence is:

E =mse(U):
E — new(Mse) 1. affine(3,4),x,v1,%X, V1
EI—UI 2. logistic(4), v1, V2, V1, V2
E.O —U.O 3. affine(4,2),va,y, V2, ¥
ES—U 4. mse,x,y, X,y

From the point of view of the vector function implemented th The forward and backward propagation are carried out by
newly createdmse unit E behaves exacly like its underlying ™0 default methods/y,, and M. They depend on the stored

unit U. However the methods aof define how to calculate Cr?m?'lat'on kseqkuer}ccdéi.Q‘,k Whehre eacthd € M'dQ f.'s ?jf
the error and its contribution to the gradient: the form (U*,u®, v¥, 4" v¥). The methods are defined as

follows:

fw(E,x,y) : fw(M,x,y) :

Error « Error + 5 Ziozl(di —y;)? Mx «—x

for 1 <k <|Q|

gmd(E>X7ya$’) : f’U](Uk,uk,Vk)

null method y — M.y
bk(E,x,y,%,¥) : bk(M) :

yey+(y—d)/N for Q] > k>1

k 11k vk ok

where Error is a global accumulator for the erraN is the g;ad(kU ’ku ’kv ,’kv ,)k
total number of training exampled | and d is the desired (U* u?, v2, 6%, v7)
value fory in 7. The variablesError, N andd are global and The forward propagation copies the input vector to the input
must be initialized by the training task. The error accurtaala buffer of the machine, then it executes the forward procedur
allows to include several error or regularization termshimita for each step of the sequence, in order, and copies the output
given network: they are all summed up. The gradient methédffer of the machine to the output vector. The backward
of the mse unit is null because this error does not directlpropagation is carried out after the forward pass. It umlate
depend on the weighter of U. the weight gradient and backpropagates the input gradognt f

each step of the sequence, in reverse order.

. . IV. EXTENDED ARCHITECTURES
E. Machine construction

The units previously presented illustrate our impleméniat
A backpropagation learning machine is described as a scheme. Of course, other popular neural architectures can
tuple be implemented from custom made units defined within this
L framework. New units integrate seamlessly as long as they
M= (U,Qx,y,%,3) conform to the same functional composition scheme. Complex
network architectures, tailored to specific pattern redagn
where Q is the sequence of compilation steps of the machitiasks, can be created from simple building blocks, opening a
andx, y, x andy are global buffers for the input, output,wide range of applications within a single unified framework
input gradient and output gradient, respectively. A maehin To further illustrate the flexibility of this approach, let
created from a given uni which describes its structure. Theus consider a few neural architectures which are difficult to
constructor is defined as: implement in practice.

A. Higher-order neurons produces an enlarged output by concatenating severalopie
The basic idea behind classifying with a multi-layer perOf its input. The basic unitsquare and mized compute the
ceptron is to use a number of perceptrons, where each &f@lares and mixed products of its inputs, respectively. The
implements a linear decision plane, and to combine them perallel composite unit combines several subunits in parallel,
approximate the decision boundary of the different classd8us applying different functions on each vector windoweTh
Although it has been shown that a MLP is an universafientity basic unit is self-explanatory.
approximator [29], [30], depending on the structure of the Constructors for these units are as followsunch(N, L)
data it may be advantageous to use neurons with non-lin®pducesL copies of itsN-sized input vector;squared(N)
‘decision surfaces’ to separate classes. These so-tafjeer- calculatesV squared termspized(N) producesV (N —1)/2
order neurons typically achieve complex decision boundari@dixed products from itsN' inputs; identity(N) builds an
at the cost of increasing their computational complexityj{3 identity function of N inputs; parallel(U,...,U*) applies
[33]. units U to U” in parallel.
Here we outline how to implement a simple variant of With this clarification, a layer of quadratic neurons with
higher-order neurons whose decision surfaces are quadritPuts and} outputs can be represented by the expression
forms. Consider a layer of 3 input and 3 output neurons, where gerjql(

the outputy is given by branch(N, 3),
y = logistic(z) (4) parallel(mized(N), squared(N), identity(N)),
_ affine(N(N —1)/2+ 2N, M),
and wherez is logistic(M)).
1 This composite expression may be referred to as
T1 quadratic(N, M) by noticing that it depends only oV
Z2 and M, thus allowing the rapid construction of higher-order
a1 @i ... aio ig neuron layers.
z| an ax ... azio 2 5)
as1 Gz ... 0A310 x% B. Repetition
3
17 A simple kind of recursion is given by the iterative appli-
123 cation of the same function. More specifically, consider the
ToTs functional operatorepeat defined by
N————
x/ repeat(f,N) = fo fo---of
~—_——

. , . . _
As shown in (5), vectorx’ contains constant, linear and ~ times

quadratic terms. This layer of higher-order neurons re bwheref is a vector function with inputs and outputs of same

a standard neuron layer in that it performs an affine transfor . . : . o
L X . S size andN is the number of times thgt is applied in cascade.
followed by a logistic function. The difference lies in the) . L .
input vector, which has extra quadratic terms. These a'%g defined, arepeat composite unit is a particular case of a
easily appended by copying the input veckgrcomputing its serial composite unit, since
guadratic terms, and joining both linear and quadratic $erm repeat(U, N) = serial(U,U, ..., U)
N————

into a single vectox’. >
N times

whereU is a unit implementing a vector function (Figure 11).
mized affine Interestingly, the compiled expression generates autoatigt
/ a machine that implementseight sharing[19], because all
partial contributions to the weight gradient (generateccach

bran(;fb i
) backward pass through uriit) are summed up.

/
squared

'L'denltity serial .
Fig. 10. 3-input 3-output quadratic neuron layer.

Fig. 11. A repeat composite unit.

The resulting architecture is depicted in figure 10, whem@e repeat composite unit shown in panel (a) behaves likegial composite
five new units have been introduced. Theinch basic unit unit, applying a given unit/ several times in cascade (b).

of architectures can be built by feeding thean composite
unit using a projection unit that extracts local features an

%
o
)
=

x2 vz concatenate them in a single vector. Local features tylpical
— — consist of a 1-D or 2-D window over the input vector (as-
xs %% ¥ sumed to be appropiately encoded). letildviews(...,N)
x| | ' ly denote the constructor of sugh a projegtion unit that builds
|| L] a concatenation ofV vector views from its input, then the
expression

Fig. 12. A scan composite unit.

sertal(buildviews(. .., N), scan(U, N))

implements a convolutional architecture. It is worth engiha

ing that the embedded filtering urit is arbitrarily complex.
Temporal recurrence is implemented as an extensiento

(Figure 13). Time is expanded spatially: the input represen

the whole time series and the output the result series. Thus,

the training set consist of a single input-target pair. Remce

is implemented by letting the underlying uidit to receive as

input the outputs from previous applications @fduring the

scanning procedure (assumed to be sequential). This sdeeme

a form of backpropagation through timgl6], [17]. Note that

this architecture has been reduced to a common backpropaga-

tion case. There is no need for a specific training algorithm.

Fig. 13. Extension for temporal processing.

A repeat composite unit is not exactly a relaxation-typd?- Farameter injection

recurrent network because the relaxation depth is fixed.-How Some architectures require a direct access to view or ma-
ever, when those kind of networks are trained with gradientpulate their parameters. For instance, the approachopeap
descent, they are partially unfolded to generate a noramau in [34] details a self-referential network architecturattican
aproximate architecture that can be trained using the ustsgieak’ about its own weight matrix in terms of activations.
algorithms. In our approach, a simple redefinition of thExamples like this are cases ofle switching where the
forward procedure, to be used only after training, allows faputs/outputs of a unit act as another unit's parameters, o

implement relaxation. vice versa
This can be achieved by parameter injection/ejection op-
C. Scanning erators (Figure 14). Aninjector composite unit splits its

Another class of architectures that repeatedly apply desin%
function are neural networks which perform a convolution on’ i)))
its input, such a¥IR Multilayer Perceptronilﬁ], [17] and EI]IBCtOT’ CompO_SIte_unlt C(_)ncatenates the OUtpUt of its subunit
Convolutional Neural Networkil8]. Basically, both can be ¥ together with its weightsw to form y. Although the
thought as applying a function on a window that moves amﬁ@plementauon of_ these comp05|.te units is s_lmple, some car
a single input vector. Based on this observation, let ussderi’@S t0 be taken in order to define appropriate forward and
a simple implementation. backward procedures.
Without loss of generality, consider a functional operator

put x into two partsx’ and w, which are repectively
e input and parameter vectors of its subunit. Similarty, a

scan, which given a functionf and an inputk computes a) injector b) ejector
f(x1) Y1
f(x2) Y2 x y
scan(f,x) =) = . =Yy (6) *
f(xN) YN

where f(x;) = y; andx is the concatenation of subvectors Fig. 14. Weight injector and ejector.
to xV each of the same size. Similarly aspeat composite

units, ascan composite unit can be expressed in terms of a

parallel unit as follows

E. Regularizers
scan(U, N) = parallel(U, U, ..., U).
—_———

Complex non-linear neural network models often have an
N times excess of free parameters which tend to generate mappings

The scan functional operator provides a powerful glue tawith a lot of curvature and structure. This phenomenon, know

build highly parallel architectures (Figure 12). A wide sda as thebias/variance dilemmaarises as the result of overfitting

to the noise of the data and leads to poor generalization [&f, the experiments is to validate the correct definition and

[20]. compilation of complex networks. Our results confirm that th
To overcome this problem, regularization techniques hapeoposed framework leads to well defined machines trainable

been developed, which encourage smoother network mappimggh backpropagation.

by adding a penalization term to the error function [21]}{24

Althought it has been found empirically that they can lead 18, Tight-encoder

significant improvements in network generalization, these

is not widespread, mainly due to their difficult implemeraat
Weight Decayone of the simplest regularizers, consists

the sum of squared weights scaled by a decay constant

penalizing large weights:

The encoder/decoder problem is a well known test case for
qeural networks. It is usually implemented using a MLP N-
-N architecture. The weights are adjusted using an autoas-
sociative training where the desired output is the sameeas th
input. The training set contains thé canonical basis vectors
@ Z w?. (7) oftheinput space. The encoding is achieved as the resuieof t
2 P middle layer. When\/ = logo N the encoder is called ‘tight’

This penality is easily stated as a regularizer operatars thbecau:se this is the minimal size for an optimal binary enapdi

allowing it to be applied to any underlying unit, contrigi of the Fraining set (hgwever the network may use anon binary
to the global error without changing the unit's output. encoding). Here we implemented the 256-8-256 tight-encode

Let weightdecay(U, a) be the associated constructor, takin he resultmg_ MLP archlt_ecture hd860 traln_ablg parameters.
the weights of a unit/ with decay constant. The example | "€ expression that defines the encoder is given by

MLP in figure 4 could then be regularized layer-wise as cross-entropy(
mse(serial(
serial(aﬁci@e'(256, 8),
weightdecay (affine(3,4), o1), logistic(8),
logistic(4), aﬁfi.ne‘(& 256),
weightdecay(affine(4,2), as) logistic(256)
).)
This expression produces a MLP whose global error is giv¥f1€re cross-entropy(U) computes the cross-entropy error
by over the outputs of unitV [1], [3]. Minimizing this error
i 1 2, X2 2 function is equivalent to minimize th&ullback-Leibler dis-
E=E+— 2 4 =2 .
* 2 ng + 2 ;w J tanceif the outputs are interpreted as modelling a probability

. ,) distribution, which is convenient in this case.
where £ is the mean square errar; andw; are the weights Taple | shows the results for 10 independent test runs

of the first and second layer respectively. after 50 epochs using thesilient backpropagatiortraining
algorithm [14]. Figure 15 illustrates the classificationtbé
F. Other neural architectures network before and after training, togheter with the tragni

The preceeding examples present implementations of imp8FLor evolution. _ _ .
tant concepts found in the literature, but the list is inctetgg 1€ results show that the compiled machines rapidly learn
More examples that have been left out but are straightfatwaN €fficient encoding by a gradient based parameter optimiza

to implement, are: tion algorithm.
« Units: hyperbolic tangent and softmax activation func- TABLE |
tions, cross entropy error function, parametric models. TIGHT-ENCODER RESULTS
« Unsupervised learningtraining without target vectors,
dimensional reduction techniques using appropriately de- Mean error [bits] 1.1098 £ 0.3058
fined reaularizers Correct classification [%]| 95.70 £ 0.0157
_ 9 - _ _ Execution time [s] 8.656 £ 0.1223
« Mixtures and comiteesnixtures of experts, comitees of
networks.
« Kernel methodskernel regression, radial basis functior’f3 .
. Iris data

networks with trainable centers.
The data set contains 3 classes of 50 instances each, where
V_ |MPLEMENTAT|ON AND TESTING eaCh ClaSS referS tO a type Of iriS plamIS(Setosa II’iS

To test our design, we developed a Java library andVgrsmolourandlns Virginica). One class is linearly separable

: . . from the other 2, while the latter two are not linearly sepéa
C stand-alone implementation. The Java library has begn
. . . . : . rom each other [35], [36]. Features are sepal length, sepal
integrated to Matlab allowing a flexible manipulation andida = : o ;
width, petal length and petal width in centimeters.

development. . .)

. . : In this case, a single layer of 3 quadratic neurons has been
We present below a selection of experiments using the Javsaed_
library which have been carried out on a PC with an AMD>C

Athlon 2400 Mhz processor and 512 Mb RAM. The objective cross-entropy(quadratic(4, 3))

10

TABLE I

IRIS SET RESULT
Class labels, epoch 1 SS SULTS

Mean error [bits] 0.5056 £ 0.1390
B Correct classification [%] 98.13 £ 0.0042
2 Execution time [s] 1.2719 £ 0.0475
g
TABLE IIl
0 50 100 el 150 200 250 CONFUSION MATRIX FORIRIS SET.
Class labels, epoch 50 real\ estimated| Setosa Versicolour Virginica
‘ ‘ ‘ Iris Setosa 49 1 0
5 2000 Iris Versicolour 1 49 0
g Iris Virginica 0 0 50
95’_100—
% 50 100 150 200 250 element-wise withw before the update is performed. This
real technique allows the definition of a degree of sensitivityhef
w0 Tfai”infl eor_ parameters to changes. The parameters are frozen by setting
= The compilation of some complex architectures could re-
g quire a prohibitive amount of storage space for the gener-
< ated execution sequence and the corresponding interraediat
£ buffers. There is trade-off between time and space. Eitier t

¢ 5 1 15 2 epgzh W 3 4 45 50 intermediate results are stored or they can be regenerated o
demand. The latter solution is to be preferred when theretis n
enough space in memory. This problem arises for example in

Fig. 15. Tight-encoder classification and training errorinty 50 epochs. convolutional neural networks, specially when the filtgrimit
itself is complex and memory demanding. A small footprint
is also relevant for an optimal use of cache memory.

The quadratic layer expands to the nested architecture of
simpler processing units described in subsection IV-A. AS i VI. CONCLUSIONS

the previous experiment, the chosen error function was they developed a flexible computational design to build
cross-entropy error. Table Il shows the results for 10 ramyo g adient-based learning machines. The scheme has been suc-
initialized test runs after 300 epochs using thsilient back- cessfully implemented and tested on complex architectures
propagationtraining algorithm [14]. The resulting confusionThis framework is a step towards the generalization of
matrix for a typical run is shown in table III. gradient-based training. It extends the applicability atk:

From the traning error graph illustrated in figure 16, WBropagation to a wide class of learning machines, namely,
can validate the compilation of the complex underlying agontinuous vector functions with computable gradientsis Th
chitecture. The compositional operators define machinas thhcludes much of the existent neural architectures, angittie
seamlessly compute their forward and backward evaluationgeed for ad-hoc training algorithms. Furthermore, nonfeed-

forward architectures are also considered, provided dapart

Training error unfolding of their structure is sufficient for training, vehi is
‘ ‘ ‘ ‘ the common case. The major achievements can be summarized
as follows:

1) Modular building designComplex machines, tailored to
solve specific learning tasks, can be created using simple
building blocks. Invariant design constraints associated
to composition rules ensure the seamless integration of

% = 00 oo 200 250 200 subunits, so that the resulting learning system is capable

epoch of computing its gradient in a recursive way.
2) Uncoupling of gradient computationThe parameter

Fig. 16. Training error for the Iris data set. gradient calculation procedure has been modularized,

allowing the application of the same first order train-

ing algorithms regardless of the machine architectural
complexity.

Standarization of architecture descriptio®ur frame-

In our implementation the network parameters can be frozen work proposes an operator based expression language
by using a mask over the gradient vector. The masking to describe neural architectures in a rapid, compact and
technique defines a constant mask vectothat is multiplied orthogonal way.

i
o

mean error [bits]
N = [e4]

N
T

C. Additional remarks 3)

11

4) Easy regularization Different types of regularization [16] Wan, E.A., “Temporal backpropagation for FIR neural
terms may be inserted at arbitrary points within a networks”,IEEE International Joint Conference on Neural
network to provide more stable training results and better Networks Vol. 1, pp. 575-580, San Diego, CA, 1990.
generalization. [17] Wan, E.A., “Temporal backpropagation: An efficient al-

5) Efficient implementatianThe compiling procedures de- gorithm for finite impulse response neural networks”. In
fined for composition operators allow for a fast compu- Touretzky, D.S., EIman, J.L., Sejnowski, T.J., and Hinton,
tation of the gradient. G.E., editorsProceedings of the 1990 Connectionist Mod-
els Summer Schaqgbp. 131-140, San Mateo, CA, Morgan
Kaufmann, 1990.

[18] LeCun, Y. and Bengio, Y., “Convolutional networks for

The authors would like to thank Gonzalo Ruz and Michel images, speech, and time serieShe handbook of brain

Tesmer for reviewing this text and for their fruitful comnten theory and neural networkspp. 255-258, MIT Press,

This work was supported by FONDECYT (grant 1030141). Cambridge, Massachusetts, 1998.

[19] Shawe-Taylor, J. “Introducing invariance: a prineigl
approach to weight sharing’Proceedings of the IEEE

ACKNOWLEGDEMENTS

REFERENCES .
International Conference on Neural NetworkSongress
[1] Bishop C. M., “Neural Networks for Pattern Recognitioi©xford Uni- on Computational Intelligence, pp. 345-349, Orlando, FL,
versity Press1995. 1994
[2] Simon Haykin, “Neural Networks: A Comprehensive Foundatj ’ . W
Macmillan College Publishing Company994. [20] Geman, S., Bienenstock, E. and Doursat, R., “Neural
[3] Theodoridis S., Koutroumbas K., “Pattern RecognitioAtademic Press Networks and the Bias/Variance Dilemmalgural Com-
1999. ;
[4] Ripley, B.D., “Pattern Recognition and Neural Netwdrk€ambridge pUt?'tlon Vol. 4, pp. 1 58_’ 1992' .
University PressCambridge, 1996. [21] Hinton, G.E., “Connectionist learning procedure&ch-
[5] McCulloch, W. S., and Pitts, W., “A logical calculus ofdlideas immanent nical Report CMU-CS-87—115Carnegie-MeIIon Univer-
Tg:;rvous activity”, Bulletin of Mathematical Biophysics:115-137, sity, Pittsburgh, PA, 1987.

[6] Bryson, A.E.Jr., Ho, Y.C., “Applied optimal control”, Bisdel Publishing [22] Krogh, A. and Hertz, J. A., “A simple weight decay can
- \Cfvongpanﬁjl%% g on New tools for brégicand analvei improve generalization”. In J.E. Moody, S.J. Hanson, and
erbos, P.J., “Beyond regression: New tools for preédicand analysis ; ; “ ; ;

in the behavioral sciences”, Ph.D. thesis, Harvard Uniser€ambridge, R.P. Llppmann, editors. "Advances in Neural Information
MA, 1974, Processing Systems”, \ol. 4, pp 450-957, San Mateo, CA,
[8] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., “Leig internal 1992. Morgan Kaufmann Publishers.

representations by error propagation”. In Rumelhart, D.riel ®lcClel- « . . .
land, J.L., editorsParallel Distributed Processingvolume 1, chapter 8, 23] Barlett, P.L., “For valid generalization, the size dfet

pp. 318-362. MIT Press, Cambridge, Massachusetts, 1986. weights is more important than the size of the network”.
[9] Bottou, L., “Une approche #orique de I'apprentissage connexionniste: |p Mozer, M.C., Jordan, M.l., and Petsche, T., editors.
;zﬁtciﬁ'ogig riﬁgﬂg:'sfggfe de la parole”, Ph.D. thesis, Unieetsit Advances in Neural Information Processing Systevios
[10] LeCun, Y., “A theoretical framework for back-propagatf. In D. 9, pp. 134-140, The MIT Press, Cambridge, MA, 1997.
Touretzky, G. Hinton, and T. Sejnowski, editoProceedings of the 1988 [24] Weigend A. S.. Rumelhart. D. E.. & Huberman. B. A.
Connectionist Models Summer Schaup. 21-28, CMU, Pittsburgh, PA, “) ! . N . L !
1988. Morgan Kaufmann. Generalization by weight-elimination with applicatioa t
[11] Y. LeCun, L. Bottou, G.B. Or and K-R. Mller, “Efficient forecasf[ing”. InR. P. Lippmann, J. Moody, _& D.S. Tour_et-
backprop’, in “Neural Networks — Tricks of the TradeSpringer zky, editors.Advances in Neural Information Processing
Lecture Notes in Computer Sciences 152gp. 5-50, 1998. SyStem'SVOL 3, San Mateo, CA. Morg?'n Kaufmann, .1991'
http://citeseer.ist.psu.edu/l ecun98efficient.htm [25] Lee, T.-C., Peterson, A.M., and Tsai, J.-C., "A muéizer

[12] Collobert, R., Bengio, S. and Mathoz J., “Torch: a feed-forward neural network with dynamically adjustable
modular machine learning software libraryTechnical structures”. IEEE International Conference on Systems,
Report IDIAP-RR pp. 02-46, IDIAP, 2002. Man, and Cyberneticspp. 367-369, Los Angeles, CA,

[13] Saarinen, S., Bramley, R.B. and Cybenko, G., “Neural 1990.
networks, backpropagation, and automatic differentitio [26] LeCun, Y., Denker, J.S., and Solla, S.A., “Optimal brai
Automatic Differentiation of Algorithms: Theory, Imple- damage”Advances in Neural Information Processing Sys-
mentation, and Applicatignin Griewank, A. and Corliss, ~ tems 2In Touretzky, D.S., editor, pp. 598-605, San Mateo,
G.F., editors, pp. 31-42, Philadelphia, PA, SIAM, 1992. CA. Morgan Kaufmann, 1990b.

[14] Riedmiller M., Braun H., “A Direct Adaptive Method [27] Hassibi, B., Stork, D.G., and Wolff, G.J., “Optimal fma
for Faster Backpropagation Learning: The RPROP Algo- surgeon and general network prunnindEEE Interna-
rithm”, Neural Networks for Pattern RecognitionPro- tional Conference on Neural Networksol. 1, pp. 293-
ceedings of the IEEE International Conference on Neural 299, San Francisco, CA, 1993.

Networks San Francisco, CA, March 28-April 1, 1993. [28] Aho, A. V., Sethi, R., Ullman, J. D., “Compilers”,

[15] Hestenes, M.R. and Stiefel, E., “Methods of conjugate Addison Weslgy1986.
gradients for solving linear systemsJournal of Research [29] Cybenko, G., “Approximation by superposition of a
of the National Bureau of Standardsol. 49 (6), pp. 409- sigmoidal function”.Mathematics of Control, Signals and
436, 1952. Systems\Vol. 2, pp. 303-314, 1989.

[30] Hornik, K., “Approximation capabilities of multilaye
feedforward neural networks'Neural Networks Vol. 4,
pp. 251-257, 1990.

[31] Buchholz, S. and Sommer, G., “A hyperbolic multilayer
perceptron”International Joint Conference on Neural Net-
works, Como, ltaly\Vol. 2, pp. 129-133. IEEE Computer
Society Press, 2000.

[32] Lipson, H. and Siegelmann, H.T., “Clustering irregula
shapes using high-order neuron®leural Computation
12(10):2331-2353, 2000.

[33] Banarer, V., Perwass, C., Sommer, G., “The hypersphere
neuron”.ESANN’2003 proceedings - European Symposium
on Artificial Neural Networks\Vol. 4, pp. 469-474, Bruges,
Belgium, 2003.

[34] Schmidhuber, J., “A self-referential weight matri@ro-
ceedings of the International Conference on Atrtificial Neu-
ral Networks Springer, pp 446-451, Amsterdam, 1993.

[35] Fisher, R. A., “The use of multiple measurements in
taxonomic problems”,Annual Eugenics Springer, Vol.

7, Part Il, pp. 179-188, 1936; also in “Contributions to
Mathematical Statistics”, John Wiley, NY, 1950.

[36] Duda, R.O. and Hart, P.E., “Pattern Classification and
Scene Analysis”, (Q327.D83) John Wiley & Sons, ISBN
0-471-22361-1, pp. 218, 1973.

12

