

Motivation

Causal knowledge

Humans guide their decisions using **causal knowledge**. Causal knowledge predicts **what the world will do** when we **interact** with it. The processing of causal information is deeply embedded in cognition.

But how causal knowledge is: - represented, - learned, - and used is currently not **well understood**.

Predictions in observations *vs.* interventions

Causal knowledge affects the way we: - interpret evidence and - make predictions:

idea of **partial control**.

How do we learn complex causal dependencies?

Hypothesis

Is it sufficient to experience **both regimes** to learn a complex causal dependency?

Method

We let people play a repeated **betting game** that they can **intervene** half of the time. We infer their beliefs from their bets and compare them to the causal model.

Causal Reasoning in a Prediction Task with Hidden Causes Pedro A. Ortega, Daniel D. Lee and Alan A. Stocker University of Pennsylvania

Experiment

The betting game

Game and trials

Subjects **must complete** 40 blocks (levels) of 10 trials each. They are allocated an **initial budget** at the beginning of each block. Each **bet reduces** the budget.

Their goal is to **keep** as much as possible of the initial budget. If they reach zero, they **must repeat** the block.

Log-loss scoring rule encourages reporting the true beliefs. The system allows measuring beliefs on a **trial-by-trial** basis. Confident bets are **too risky**. The initial budget is set so that **conservative guesses** cannot be successful.

There are **two boxes** containing red and white balls.

Contents are hidden.

Subjects must bet on the colour of a randomly drawn ball.

4 out of 5 subjects learned to predict correctly **right from the start**.

Training games: learning is very quick (< 40 trials) Test game: little to **no learning**, yet positive slope: noisy beliefs? S3 performs pretty well during the training games: smaller hypothesis space?

Summary

Excepting S3, the subjects made bets that were **consistent** with the **causal model**'s predictions.

Hence, they **learned** the causal model, **marginalised** over hidden causes, and **distinguished** between actions and observations.

Subjects appear to rely on a **sense of agency** to interpret their experience as either interventional or observational, even though they do not need to do so to perform well.

References

Hagmayer, Y. and Sloman, S. (2009). People conceive of their choices as intervention. Journal of Experimental Psychology: General, 138:22-38. Hagmayer, Y. and Meder, B. (2013). Repeated Causal Decision Making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(1). Meder, B., Hagmayer, Y., and Waldmann, M.R. (2009). The role of learning data in causal reasoning about observations and interventions. *Memory & Cognition*, 37(3):249-264. Dawid, A. P. (2006). Probability Forecasting. *Encyclopedia of Statistical Sciences*.

