Causal reasoning in a prediction task with hidden causes

Pedro A. Ortega, Daniel D. Lee, and Alan A. Stocker University of Pennsylvania

Motivation

- Humans guide decisions using causal knowledge.
- Causal knowledge predicts what the world does when we **interact** with it.
- Processing of causal information deeply embedded in animal cognition [1].
- Children develop causal understanding early on [2].

Motivation

Understanding how causal knowledge is

- represented,
- learned,
- and **used**

is currently **not well understood**.

Causal theory of choice

- Humans infer **consequences** of their actions using **causal models** learned through experience [1].
- Causal knowledge is represented using causal Bayes nets [2].

Observations *vs.* Interventions

Belief updates

• Observational:

$$P(W|R) = \sum_{s} P(W|S = s, R)P(S = s|R)$$

• Interventional:

$$P(W|do(R)) = \sum_{s} P(W|S = s, R)P(S = s)$$

Questions

- Can humans learn and use **complex** causal structures?
- Hypothesis: Subjects **learn a complex causal dependency** (*i.e.* cause-effect relation) when they experience **both** the observational and interventional regimes.

Experimental method

- **Betting game** with hidden causes:
 - Two boxes with red and white balls.
 - Contents are **hidden**.
 - Bet on colour of randomly drawn ball.
- The causal structure is a complex model.
- Subjects play sequence of betting trials which they can **intervene** half of the time.
- We measure their **beliefs** and compare them to the model predictions.

Betting game

Betting game

Betting game

Game structure

- Subjects must complete 40 blocks (*levels*) of 10 trials each.
- They are allocated an **initial budget** at the beginning of each block.
- Each **bet reduces** the budget.
- Their goal is to **keep** as much as possible of the initial budget.
- If they reach zero, they **must repeat** the block.

Game structure

Betting mechanism

- Log-loss scoring rule encourages reporting true beliefs [1].
- Allows measuring beliefs on a **trial-by-trial** basis.
- Confident bets are too risky.
- Initial budget **prevents conservative** guesses.

Training & test games

Game	Levels	Transparent	Intervention
Training 1	10	yes	no
Training 2	10	yes	yes (50%)
Test	40	no	yes (50%)

- We trained subjects on two simplified games:
 - Training 1 familiarises subjects with betting scheme.
 - Training 2 teaches the causal structure.

Summary of experimental method

- **Betting** optimally requires:
 - **learning** the trial parameters (statistics and causal structure),
 - marginalising over then hidden causes,
 - and **distinguishing** between actions and observations.
- To train the subjects:
 - we let them play two short **training games**,
 - where the **contents** of the boxes were **visible** at all times,
 - and where we let them **experience each condition** half of the time.
- To test whether they use causal reasoning:
 - we measure their **predictive beliefs** about the ball's colour,
 - and **compare** them to the **model** predictions.

Data collection

- Subjects: Five (UPenn) students (S1-S5).
- The training and test games were played in a **single session** (< 90 mins), totalling more than **600 trials**.
- Were not told statistics nor causal structure.
- Were told that all trials had identical statistics & causal structure; and the differences between games.
- \$10 for participation + \$10 for completion.

Final prediction probabilities

- 4 out of 5 learned to predict correctly **right from the start**.
- Combines expected utility, Bayes, and causality.
- S3 treated every condition as interventional.

Learning curves

- Cumulative regret = performance optimal.
- Smaller slope = better; negative curvature = learning.
- Training games: learning is very quick (< 40 trials).
- Test game: little to no learning—but positive slope: noisy beliefs?
- Curiosity: S3 performs pretty well during the training games: smaller hypothesis space?

Summary of results

- Excepting S3, all the subjects made bets that were **consistent** with the **causal model**'s predictions.
- Hence, they induced the causal model, marginalised over hidden causes, and distinguished between actions and observations.
- Crucially:
 - absence of learning during test game,
 - and **uselessness** of regime distinction during training games, suggest that subjects could **spontaneously** supply "regime indicators" to their experience.

Conclusions

- Subjects can **learn complex** causal structures— it appears to be **sufficient** to let them experience both regimes.
- Subjects can use causal deductive reasoning.
- Subjects appear to **spontaneously** tag experience as either interventional or observational, even though they **do not need** to so to perform well.