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Abstract
Correctly assessing the consequences of events is essential for
a successful interaction with the world. It not only requires a
causal understanding of the world but also the ability to dis-
tinguish whether a given event is the result of an agent’s own
action (intervention) or simply the consequence of the world
being in action (observation). Previous studies have shown
that humans can learn causal structures, and that they can dis-
tinguish interventions from observations. These studies almost
exclusively focused on structures where interventions led to a
simple forward conditioned inference problem. We tested hu-
man subjects in a prediction game that required the integration
over hidden causes, using a betting mechanism that allowed us
to monitor subjects’ beliefs. Subjects learned the causal struc-
ture and the conditional probabilities with appropriate feed-
back. Once learned, all but one were immediately able to cor-
rectly predict the causal effects of their interventions according
to optimal causal reasoning.
Keywords: Causal interventions, betting game, belief updates.

Introduction
There is ample experimental evidence suggesting that hu-
mans guide their decisions in interacting with the world us-
ing causal knowledge. Causal interpretations offer superior
explanatory power over purely observational (correlational)
ones, allowing us to understand, predict and interact with
the world in a multitude of ways. Indeed, the processing of
causal information appears to be deeply embedded in animal
cognition (Sloman, 2005; Blaisdell et al., 2006); and studies
in child development have shown that we learn to form and
rely on causal knowledge early on in our lives (Gopnik et al.,
2004; Meltzoff, 2007).

Hagmayer and Sloman (2009) have recently proposed the
causal theory of choice. The theory proposes that humans
correctly infer the consequences of their own actions (in-
terventions) based on causal models that they have learned
through experience. Crucially, it predicts that reasoning
based on an intervention vs. an observation generally results
in different beliefs about their consequences even if the ob-
servation and the intervention are identical. The theory uses a
popular probabilistic framework called causal Bayes nets that
permits a precise mathematical formulation of causal reason-
ing under this distinction (Spirtes and Scheines, 2001; Pearl,
2009; Dawid, 2007).

This theory has been put to test in several studies. In one-
shot decision making, it has been shown that humans treat
their own decisions as interventions according to a causal
model (Hagmayer and Sloman, 2009), and that they have

different beliefs if the decisions were simply observed in-
stead (Saito and Shimazaki, 2011). Subjects in these experi-
ments were given a written description and a graphical repre-
sentation of the causal structure of the task. Crucially, how-
ever, they did not experience the consequences of their deci-
sions, indicating that their differentiation between interven-
tion and observation is inherent and spontaneous rather than
learned. Subsequent studies have then investigated the degree
to which human observers can learn the causal structure over
repeated observations of the consequences of their interven-
tions (e.g., Steyvers et al. (2003)). Recently, Hagmayer and
Meder (2013) studied human subjects in a repeated decision-
making task where the subjects’ goals was to maximize pay-
off by intervening in a causal system with multiple outcome
variables. By introducing abrupt changes to the causal struc-
ture of the system that kept the observable consequences con-
stant, the experimenters were able to elicit revisions in the
subjects’ decisions, thereby showing that they were indeed
sensitive to the causal structure.

However, these previous studies have been limited to
causal structures in which interventions led to a simple for-
ward conditioned inference problem where the outcome was
only conditioned on the intervention itself (e.g., “causal
chain” or “common cause” problem; see Fig. 1a,b). Thus
it remains unclear whether human subjects can learn and cor-
rectly access the consequences of their intervention in more
complex causal structures (see e.g., Berry and Broadbent
(1995); Osman (2010)). An exception is the work by Meder
et al. (2009), in which participants were asked to report the
probabilities of events that required them to combine obser-
vational/interventional evidence and the base rates of a hid-
den cause. In this study, however, subjects were explicitly
informed about the underlying causal structure at the begin-
ning of the experiment.

The main goal of our work was to investigate whether hu-
mans subjects can learn more complex causal structures, in
which their interventions only led to a partial conditioning of
the outcome. Specifically, we tested subjects in a repeated
prediction task that required them to marginalize over the
hidden cause in a “fully connected common cause” struc-
ture (Fig. 1c). Our hypothesis was that it is sufficient to let
subjects experience both the observational and interventional
regimes of a controllable variable in a sequence of events for
them to learn an accurate causal model of this structure. We
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Figure 1: Intervention vs. observation in a directed acyclic
graph (DAG) over the binary random variables S, R and W .
The DAGs of two causal models known as a) “common
cause” and b) “causal chain” that have been previously stud-
ied. c) The DAG of a more complex, “fully connected com-
mon source” structure. d) Observing the value of R entails a
belief update captured through Bayesian conditioning. e) In
contrast, setting the value of R (intervention) leads to a mod-
ified graph, in which R is independent from S. As a result,
the information flow between R and W is different compared
to the observational regime in panel (d), leading to a different
Bayesian belief update. Crucially, compared to the simpler
structures that have been previously tested (e.g. causal chain),
correct inference requires integration over the hidden cause S.

implemented the task in form of a color prediction betting
game. We designed a clever betting mechanism that directly
reflects subjects’ beliefs on a trial-to-trial basis based on a
penalty function that is minimized when reporting the true be-
liefs (Dawid, 2006). This allowed us to track subjects’ belief
updates and thus to quantitatively confirm the degree to which
subjects conform to causal Bayesian reasoning. We found
that four out of five participants were able to precisely learn
the form of this more complex causal structure and its asso-
ciated beliefs when provided with sufficient evidence. Fur-
thermore, once learned, subjects were immediately able to
correctly apply their knowledge of the causal structure and
the associated beliefs when performing interventions in situ-
ations where the common cause was hidden.

Inference with Causal Interventions
The distinguishing feature of a causal intervention is that it
renders the causally preceding random variables statistically
independent from the intervened random variable. Colloqui-
ally, this means that “actions can influence the future but they
cannot amend the past”. These causal relations can be for-
malized in terms of a directed acyclic graph (DAG) (Pearl,
2009). Consider a random variable R embedded in a causal
context given by S and W representing parent and child ran-
dom events as depicted in Fig. 1c. This fully connected “com-
mon cause” graph is the simplest model where the effect is
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Figure 2: The color prediction betting game. Each trial of the
game followed three steps: (S) The computer swapped the po-
sition of two boxes with probability P(S). (R) The computer
chose the right box with probability P(R|S). (W) Finally, the
computer drew a white ball from the chosen box with proba-
bility P(W |S,R). Subjects had to place a bet on the color of
the drawn ball before the color was revealed. In the Training
Game 2 and the Test Game, subjects sometimes were asked
to intervene at the middle step (R).

controlled by a single unknown cause S through two different
pathways in which one of them can be intervened.

The probability of W given the observed value of R
(Fig. 1d) can be computed as

P(W |R) = ∑s P(W |S = s,R)P(R|S = s)P(S = s)
∑s P(R|S = s)P(S = s)

. (1)

If, however, the value of R is the result of an intervention
(do(R)), then

P(W |do(R)) = ∑
s

P(W |S = s,R)P(S = s) (2)

is the predicted probability of W (Pearl, 2009). Note that (2)
is obtained by computing the posterior on the modified DAG
(Fig. 1e).

Experimental Method
The general goal was to experimentally test whether subjects
can update their beliefs in a way that is consistent with causal
interventions when they choose the values of random vari-
ables themselves. We engaged subjects in a sequential bet-
ting game where they repeatedly had to bet on the outcome
of a random event. One trial of the game comprised three
sequential steps, each one associated with a different ran-
dom variable; and where subjects sometimes were asked to
choose the value of the middle variable themselves (interven-
tion). The rationale behind this sequential setup is twofold.
First, we wanted to succinctly capture the full scope of an
intervention, and this setup allowed us to measure the effect
on both causally preceding and succeeding random variables.
Second, we wanted to test whether humans can dynamically
switch between their belief updates for an observation and the



updates for an intervention. Third, we wanted to continuously
monitor subjects learning rate throughout the entire experi-
ment. To the best of our knowledge, these features combined
are unique to our experimental design.

The experiment was organized as a set of two simplified
versions of a color prediction betting game intended to train
the subjects, followed by the main game that tested our hy-
pothesis (Fig. 2). The goal of the first game was to familiarize
subjects with the betting mechanism, while the second game
was aimed to let subjects learn the causal structure linking
the random events. Finally, the main game tested their causal
reasoning skills. Each game was subdivided into a sequence
of levels (blocks) containing ten prediction trials which are
described further down.

Subjects were instructed to bet on the outcome of the last
random variable. The game structure was such that they were
highly motivated to maximize their wins X by making accu-
rate bets. The wins were determined on a level-to-level ba-
sis as follows: At the beginning of each level, subjects were
given a fixed budget B which they had to protect from losses
L that occurred in each trial due to the inaccuracies in their
bets. If they passed the ten trials of a level with a positive bud-
get B−L > 0, they collected the remaining points and added
them to their total wins as X ← X + (B− L). If, however,
the budget turned negative at any moment before the end of a
level, subject had to repeat the level from the beginning. This
design encouraged subjects to improve their predicting strate-
gies early on in order to successfully progress in the game.

Game structure. We designed a betting game where sub-
jects were required to bet on the color of a ball drawn from
one of two boxes. The structure of one trial of the game is
illustrated in Fig. 2. Two boxes were initially placed next
to each other, the one on the left containing four white balls
and the one on the right containing three red and one white
ball. In the first step, the positions of the boxes were swapped
with probability p = 1/4. In the middle step, one of the two
boxes was chosen, either by the computer or by themselves.
In the final step, a ball was randomly drawn from the cho-
sen box and its color revealed. The game is formalized via
three binary random variables S, R and W whose values were
drawn from the (conditional) probability distributions P(S),
P(R|S) and P(W |S,R) respectively. The corresponding causal
DAG is shown in Fig. 1c. Importantly, the computer always
chooses the box with more red balls in the middle step, which
is something the subjects could learn from data.

Betting process. On each trial, subjects were forced to
place a bet on the color of the drawn ball W before its ac-
tual color was revealed and the bets were processed. The
accuracy of their bets was measured using a log-loss scor-
ing rule (Dawid, 2006; Bickel, 2007). Specifically, sub-
jects made their bets by indicating the losses they were will-
ing to accept for each of the two outcomes. They did so
by adjusting the lengths of two coupled bars (see Fig. 3).
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Figure 3: Structure and screenshots from a trial in the Test
game. a) At the beginning of the trial, the boxes were placed
next to each other and swapped with a given probability. In
contrast to the two Training games, the boxes were opaque
and thus did not show their content. b) After one of the boxes
(here: the right one) was selected with a certain probability,
subjects placed a bet by adjusting the lengths of two coupled
betting bars (red/white). The length of each bar determined
the amount the subject was willing to lose from the budget
(in green) in the event of each outcome (i.e., the ball be-
ing “white” or “red”). c) Once the bet was placed, a ball
was drawn randomly and its color was revealed. The betted
amount got subtracted from the budget. d) The betting struc-
ture was such that subjects who minimized their expected
losses were implicitly reporting their beliefs (see text for de-
tails).

The lengths were calculated as L(white) = − log2( f ) and
L(red) = − log2(1− f ) respectively, where f ∈ (0,1) stands
for the subjects’ predicted probability for white. The advan-
tage of this scoring rule is that it is strictly proper: theoreti-
cally, a strictly proper scoring rule is uniquely optimized by
the true probabilities, thus encouraging subjects to quickly
adopt the true probabilities and be honest in reporting their
beliefs, while simultaneously allowing us to accurately mea-
sure their beliefs on a trial-per-trial basis rather than estimat-
ing them from empirical averages.

The bets were processed as follows. Once the ball was
drawn and the color has been revealed, the corresponding
loss was subtracted from the subject’s budget. To prevent
subjects from being successful through conservative, indif-
ferent guessing (i.e., choosing f ≈ 1/2 with an associated
loss of L ≥ 1 bit), they were allocated an initial budget of
only B = 10 bits per level. Additionally, the log-loss renders
confident guesses too risky, as penalties for incorrect guesses
diverge rapidly when f → 0 or f → 1 (see Fig. 3d). While
this betting scheme may appear rather complicated, subjects
quickly assimilated it within the first few trials after which it



reportedly felt very natural.

Game sequence. Subjects played a set of three games in
sequence, namely two Training games and one Test game.
All games followed the general description above and had
the same probability structure. They differed in three as-
pects: i) the number of levels subjects had to complete suc-
cessfully, ii) the transparency of the boxes, and iii) whether
subjects were asked to intervene. With transparent boxes,
subjects can form their beliefs for “white” by simply look-
ing at the contents of the chosen box. However, if the boxes
are opaque, then subjects must infer the contents by com-
bining prior knowledge about S and the known value of R.
This is a much harder prediction task because subjects need
to marginalize over two possible states of S in order to be able
to bet accurately. Also, when asked to intervene subjects can
attempt to choose the box containing only white balls in or-
der to simplify the prediction task. Obviously, they cannot
pick this box with certainty when the boxes are not transpar-
ent. Below is a short description of the three games and their
differences:

• Training Game 1: The main purpose of the first game
was to familiarize subjects with the task and the betting
mechanism that is based on the log-loss scoring rule. Sub-
jects passively observed the random events generated by
the computer and then placed their bets before the ball was
drawn from the chosen box. The contents of the boxes were
visible at all times.

• Training Game 2: The purpose of this game was to per-
mit subjects to learn the causal structure of the game. The
game was similar to the first training game in that the con-
tents of the boxes were fully visible at all times. How-
ever, subjects were asked to choose the box in 50% of
the trials. Crucially though, since the boxes are trans-
parent, the subjects’ bet on the color of the ball W de-
pended only on the values of S and R and not on whether
they picked the box themselves. Formally, this means that
P(W |S,R) = P(W |S,do(R)).

• Test Game: The main game tested whether subjects suc-
cessfully used their causal knowledge acquired throughout
the two training games. It was a more difficult game for
the subjects because the boxes were no longer transpar-
ent. The game allowed us to test whether subjects treated
interventions and observations differently when comput-
ing their belief updates, and thus whether they were able
to marginalize over the latent variable S. As in Training
game 2, subjects were asked to pick the box in 50% of the
trials. Here, however, the optimal belief updates were dif-
ferent depending on whether they chose the box themselves
or not, i.e., P(W |R) 6= P(W |do(R)).

The difficulty of the three games progressively increased. See
Table 1 for a summary of their differences.

Table 1: Game Parameters
Game Levels Transparent Intervention

Training 1 10 yes no
Training 2 10 yes yes (50%)

Test 40 no yes (50%)

Data Collection. Five students (S1-S5) from the University
of Pennsylvania took part in this study after giving their in-
formed consent. All subjects were naı̈ve to the task. This
study did not attempt to characterize across population differ-
ences.

The games were implemented as computer games (see
Fig. 3a,b,c for actual screen shots) and subjects played the
three games in sequence on a laptop computer (Lenovo
Thinkpad X201). They were instructed to maximize their
overall wins X in each one of the games. All subjects com-
pleted the three games within less than 90 minutes. Since this
required completing at least 600 trials, the average time spent
on each trial did not exceed 9 seconds.

Subjects were not given the correct probabilities nor the
causal structure of the game, and thus they had to learn these
parameters from actually playing the games. However, they
were told that all three games used identical statistics, and
only varied in whether interventions were allowed or not, and
in the transparency of the boxes. Subjects were paid $10 (in
U.S. Dollars) for their participation and an extra $10 if they
completed all three games (which they did without excep-
tion).

Results
Figure 4 summarizes our main findings. It shows the empiri-
cal frequencies of the different conditions in the Test game, as
well as subjects’ average beliefs about drawing a white ball
under each of these conditions. For comparison, we included
the optimal beliefs derived from the true causal model (OPT).
All subjects approximately learned the correct probabilities
associated with choosing the left or the right box (interven-
tion conditions in Fig. 4b). More importantly, with the ex-
ception of one subject (S3), all subjects clearly distinguished
between interventions and observations as indicated by their
highly significant difference between the beliefs assigned to
the condition R = 0 (observation) as compared to the condi-
tion do(R = 0) (intervention). The measured beliefs for the
intervention condition do(R = 1) are not very informative be-
cause subjects tested this intervention only a very small num-
ber of times (Fig. 4a), and thus are not shown. In fact, from a
point of view of maximizing utility the intervention do(R= 1)
should never be performed. In general, subjects’ behavior is
qualitatively well captured by the optimal causal model.

Subjects who distinguished between the interventional and
observational regimes were able to make this distinction right
from the start. This is reflected in the fact that their beliefs
changed very little during the Test game (see Fig. 4c). This
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Figure 4: Measured empirical frequencies and average beliefs in the Test game. Data for each individual subject are shown
together with the optimal behavior. a) Empirical relative frequencies of the different conditions. Note that subjects for the large
part correctly avoided to perform the intervention do(R = 1). b) Subjects’ average beliefs of drawing a white ball for each
condition (error bars represent the standard deviation). The gray shaded areas in a) and b) indicate the conditions when subjects
performed interventions. Note, because subjects very rarely chose the intervention do(R = 1), the resulting empirical belief
values were not informative. c) Comparison of the average beliefs during the first and the last hundred trials for each subject
and each condition. Points on the diagonal denote no change.

suggests that subjects can directly apply the causal structure
learned during the Training games to the new situation of the
Test game rather than treating the lack of knowledge of S as a
novel context that requires to learn the task’s statistics anew.

In order to analyze the learning behavior of subjects, we
compared their trial-by-trial performance with that of an op-
timal strategy that consistently chose the best bet. The perfor-
mance is measured in terms of the cumulative regret defined
as (Bubeck and Cesa-Bianchi, 2012)

R(T ) =
T

∑
t=1

L( ft ,wt)−
T

∑
t=1

L( f ∗t ,wt) (3)

where ft and f ∗t are the probabilities of drawing a white ball
in trial t issued by the subject and the optimal performer re-
spectively, wt ∈ {0,1} encodes the actual outcome at time t,
and L is the log-loss

L( f ,w) =

{
− log2( f ) if w = 1,
− log2(1− f ) if w = 0.

(4)

The results are shown in Fig. 5. Learning is generally re-
flected in a negative curvature of the cumulative regret. No-
tice that intervals having zero slope correspond to optimal be-
havior where subject’s bets matched the ones of the optimal
performer (OPT). Furthermore, super-optimal behavior (i.e.,
decreasing cumulative regret) can occur in individual realiza-
tions of the experiment, but not on average over repeated runs.
For example, subject S2 got lucky in the first Training game,
by initially performing very risky bets that, by luck, turned
out to be correct.

The regret curves shown in Fig. 5 provide some interesting
insights. First, they reveal that subjects seem to have learned
to correctly use the betting mechanism early on (typically
within 40 trials) during the two Training games. Aside from
some occasional deviations from the optimal betting strategy
that can be attributed to intermittent exploratory and/or risky
behavior, the regret curves are surprisingly flat over relative
large intervals. In the Test game however, optimal behav-
ior was the exception rather than the norm, with most of the
regret curves showing constant positive slopes with very lit-
tle, if any, curvature. Given that subjects’ average beliefs are
remarkably close to the optimal causal model (Fig. 4b), and
that these beliefs were already instantiated/learned at the time
they started the Test game (Fig. 4c), this suggest that some
additional source of uncertainty caused this suboptimal be-
havior. A simple explanation could be that during the Test
game, when the boxes were no longer transparent and the sub-
jects had to remember the correct belief structure of the causal
model, uncertainty (noise) in these remembered beliefs led to
temporal fluctuations in the subjects’ beliefs (sampling) that
resulted in such suboptimal behavior (Gifford et al., 2014).
Note, however, that the notion of a “shaky hand”, i.e., noise
in adjusting the betting bar, is an unlikely alternative expla-
nation because the regret curves of the two Training Games
clearly indicate that subjects were perfectly able to accurately
operate the betting mechanism.

Discussion
With the exception of S3, all the subjects made bets that
were contingent on whether they chose the box themselves
or not. These bets were qualitatively consistent with predic-
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Figure 5: Cumulative regret curves for measuring trial-by-
trial learning behavior, shown for all three games. A negative
curvature indicates learning, and a slope equal to zero corre-
sponds to optimal behavior. The green-to-blue curves show
the prediction performance for individual subjects. The red
curve corresponds to the optimal performer.

tions derived from the optimal causal model, implying that
they marginalized over the latent cause and treated their own
actions as causal interventions in belief updates.

Crucially, this distinction is made immediately at the be-
ginning of the Test Game. Figure 4c, together with the regret
curves, suggests that all subjects (with the exception of sub-
ject S5) relied on their knowledge learned during the Training
Games, but no longer learned during the Test Game. This is
interesting, because the task during the the Training games
did not depend on whether the regime was interventional or
not, but only on the contents of the chosen box. Indeed, S3—
the only subject who did not learn to distinguish between in-
tervention and observation—actually outperformed the other
subjects during the second Training game. Thus, this shows
that subjects tend to learn the causal structure of a system and
use this knowledge even under conditions where it is not ben-
eficial with regard to expected utility.

Conclusions
Our results complement previous studies that investigated the
role of causal reasoning in decision making. We have found
that subjects can learn complex causal dependencies in a re-
peated betting task without being explicitly informed about
the underlying causal structure. Furthermore, most subjects
in our study performed in a way that optimally combined
Bayesian and causal reasoning: first by integrating over la-
tent causes and second by distinguishing between actions and
observations when interpreting the feedback signal.

An important open question is under what conditions hu-
mans acquire causal knowledge. For this, it is necessary
to address the question of what constitutes causal evidence
by analyzing how human subjects combine evidence when
they can both observe and intervene. In our setup, we let
subjects: a) see the events that causally precede their deci-
sions (i.e. the underlying cause); and b) experience the con-
sequences of these decisions under the observational and in-
terventional regimes. We have shown that this information
was sufficient for all but one subjects. Extending the study to
a larger subject pool will provide a more accurate description

of differences across the population.
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