Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
and_or_kl [2024/06/20 13:05] – [Building conjunctions and disjunctions] pedroortega | and_or_kl [2024/07/26 18:53] (current) – pedroortega | ||
---|---|---|---|
Line 1: | Line 1: | ||
====== And, Or, and the Two KL Projections ====== | ====== And, Or, and the Two KL Projections ====== | ||
- | |||
> I discuss the difference between minimizing the KL-divergence with respect to the first and second argument, and will conclude that they correspond to AND and OR operations on distributions, | > I discuss the difference between minimizing the KL-divergence with respect to the first and second argument, and will conclude that they correspond to AND and OR operations on distributions, | ||
+ | |||
+ | //Cite as: Ortega, P.A. "And, Or, and the Two KL Projections", | ||
+ | |||
Oftentimes I see people wondering about the meaning of the two KL-projections: | Oftentimes I see people wondering about the meaning of the two KL-projections: | ||
Line 20: | Line 22: | ||
{{ :: | {{ :: | ||
- | Personally, I find this explanation somewhat | + | Personally, I find this explanation somewhat |
Line 34: | Line 36: | ||
Let's say we have $N$ distributions $q_1, q_2, \ldots, q_N$ over a finite set $\mathcal{X}$. | Let's say we have $N$ distributions $q_1, q_2, \ldots, q_N$ over a finite set $\mathcal{X}$. | ||
Given a set of positive weights $w_1, w_2, \ldots, w_N$ that sum up to one, their | Given a set of positive weights $w_1, w_2, \ldots, w_N$ that sum up to one, their | ||
- | *linear mixture* is | + | //linear mixture// is |
$$ | $$ | ||
Line 40: | Line 42: | ||
$$ | $$ | ||
- | The *linear mixture* expresses $N$ mutually exclusive hypotheses $q_i(x)$ that | + | The //linear mixture// expresses $N$ mutually exclusive hypotheses $q_i(x)$ that |
could be true with probabilities $w_i$. That is, either $q_1$ **or** $q_2$ **or** | could be true with probabilities $w_i$. That is, either $q_1$ **or** $q_2$ **or** | ||
... **or** $q_N$ is true, with probability $w_1$, $w_2$, ..., $w_N$ respectively, | ... **or** $q_N$ is true, with probability $w_1$, $w_2$, ..., $w_N$ respectively, | ||
Line 142: | Line 144: | ||
Thus, it turns out that sequential predictions can be regarded as an alternation | Thus, it turns out that sequential predictions can be regarded as an alternation | ||
between OR and AND operations, first to express our uncertainty over the hypotheses, | between OR and AND operations, first to express our uncertainty over the hypotheses, | ||
- | and second to incorporate new evidence, respectively. | + | and second to incorporate new evidence, respectively. |